forked from seungeunrho/minimalRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha3c.py
129 lines (105 loc) · 3.78 KB
/
a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import torch.multiprocessing as mp
import time
# Hyperparameters
n_train_processes = 3
learning_rate = 0.0002
update_interval = 5
gamma = 0.98
max_train_ep = 300
max_test_ep = 400
class ActorCritic(nn.Module):
def __init__(self):
super(ActorCritic, self).__init__()
self.fc1 = nn.Linear(4, 256)
self.fc_pi = nn.Linear(256, 2)
self.fc_v = nn.Linear(256, 1)
def pi(self, x, softmax_dim=0):
x = F.relu(self.fc1(x))
x = self.fc_pi(x)
prob = F.softmax(x, dim=softmax_dim)
return prob
def v(self, x):
x = F.relu(self.fc1(x))
v = self.fc_v(x)
return v
def train(global_model, rank):
local_model = ActorCritic()
local_model.load_state_dict(global_model.state_dict())
optimizer = optim.Adam(global_model.parameters(), lr=learning_rate)
env = gym.make('CartPole-v1')
for n_epi in range(max_train_ep):
done = False
s = env.reset()
while not done:
s_lst, a_lst, r_lst = [], [], []
for t in range(update_interval):
prob = local_model.pi(torch.from_numpy(s).float())
m = Categorical(prob)
a = m.sample().item()
s_prime, r, done, info = env.step(a)
s_lst.append(s)
a_lst.append([a])
r_lst.append(r/100.0)
s = s_prime
if done:
break
s_final = torch.tensor(s_prime, dtype=torch.float)
R = 0.0 if done else local_model.v(s_final).item()
td_target_lst = []
for reward in r_lst[::-1]:
R = gamma * R + reward
td_target_lst.append([R])
td_target_lst.reverse()
s_batch, a_batch, td_target = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(td_target_lst)
advantage = td_target - local_model.v(s_batch)
pi = local_model.pi(s_batch, softmax_dim=1)
pi_a = pi.gather(1, a_batch)
loss = -torch.log(pi_a) * advantage.detach() + \
F.smooth_l1_loss(local_model.v(s_batch), td_target.detach())
optimizer.zero_grad()
loss.mean().backward()
for global_param, local_param in zip(global_model.parameters(), local_model.parameters()):
global_param._grad = local_param.grad
optimizer.step()
local_model.load_state_dict(global_model.state_dict())
env.close()
print("Training process {} reached maximum episode.".format(rank))
def test(global_model):
env = gym.make('CartPole-v1')
score = 0.0
print_interval = 20
for n_epi in range(max_test_ep):
done = False
s = env.reset()
while not done:
prob = global_model.pi(torch.from_numpy(s).float())
a = Categorical(prob).sample().item()
s_prime, r, done, info = env.step(a)
s = s_prime
score += r
if n_epi % print_interval == 0 and n_epi != 0:
print("# of episode :{}, avg score : {:.1f}".format(
n_epi, score/print_interval))
score = 0.0
time.sleep(1)
env.close()
if __name__ == '__main__':
global_model = ActorCritic()
global_model.share_memory()
processes = []
for rank in range(n_train_processes + 1): # + 1 for test process
if rank == 0:
p = mp.Process(target=test, args=(global_model,))
else:
p = mp.Process(target=train, args=(global_model, rank,))
p.start()
processes.append(p)
for p in processes:
p.join()