forked from creafz/pytorch-cnn-finetune
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar10.py
125 lines (103 loc) · 4.31 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""CIFAR10 example for cnn_finetune.
Based on:
- https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py
- https://github.com/pytorch/examples/blob/master/mnist/main.py
"""
import argparse
import torch
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
from cnn_finetune import make_model
parser = argparse.ArgumentParser(description='cnn_finetune cifar 10 example')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model-name', type=str, default='resnet50', metavar='M',
help='model name (default: resnet50)')
parser.add_argument('--dropout-p', type=float, default=0.2, metavar='D',
help='Dropout probability (default: 0.2)')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
classes = (
'plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck'
)
model = make_model(
args.model_name,
pretrained=True,
num_classes=len(classes),
dropout_p=args.dropout_p,
)
model = model.to(device)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=model.original_model_info.mean,
std=model.original_model_info.std),
])
train_set = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform
)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=2
)
test_set = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform
)
test_loader = torch.utils.data.DataLoader(
test_set, args.test_batch_size, shuffle=False, num_workers=2
)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
def train(epoch):
total_loss = 0
total_size = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
total_loss += loss.item()
total_size += data.size(0)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tAverage loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), total_loss / total_size))
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).long().cpu().sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, args.epochs + 1):
train(epoch)
test()