-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdetect_single.py
140 lines (115 loc) · 4.51 KB
/
detect_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# from utils.datasets import *
# from utils.utils import *
import torch
import cv2
import numpy as np
import time
import random
import glob
import os
from utils.augmentations import letterbox
from utils.general import non_max_suppression,xyxy2xywh,scale_coords
cuda = True
device = torch.device('cuda:0' if cuda else 'cpu')
def time_synchronized():
torch.cuda.synchronize() if torch.cuda.is_available() else None
return time.time()
def get_model(weights):
#fuse conv_bn and repvgg
model = torch.load(weights, map_location=device)['model'].float().fuse_model().eval()
#only fuse conv_bn
#model = torch.load(weights, map_location=device)['model'].float().fuse().eval()
return model
def process_img(orgimg):
import copy
image = copy.deepcopy(orgimg)
img = letterbox(image, new_shape=(416,416), auto=False)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img
def show_results(img, xywh, class_num, conf=0.4):
h,w,c = img.shape
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
color = (0, 0, 255)
cv2.rectangle(img, (x1,y1), (x2, y2), color, thickness=tl+2, lineType=cv2.LINE_AA)
label = str(int(class_num)) + ' : ' + str(round(float(conf), 4))
cv2.putText(img, label, (x1, y1 - 2), 0, tl , [225, 255, 255], thickness=tl+2, lineType=cv2.LINE_AA)
return img
def detect(model, image, conf_thres, iou_thres):
#img
#h, w, c = image.shape
#h_4, w_4 = h //4, w // 4
#image = image[:, 240:1680, :]
#t_img = np.ones((1440, 1920, 3), dtype=np.uint8)
#t_img[:, :, :] = 114
#t_img[180:1260, :, :] = image
#image = t_img
img = process_img(image)
#print(img.shape)
pred = model(img)[0]
pred = non_max_suppression(pred, conf_thres, iou_thres)
for i, det in enumerate(pred): # detections per image
gn = torch.tensor(image.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], image.shape).round()
# Write results
for *xyxy, conf, cls in det:
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
image = show_results(image, xywh, cls, conf)
return image
def detect_video(model, path, save_path = None):
cv2.namedWindow("video",cv2.WINDOW_NORMAL)
conf_thres, iou_thres = 0.4, 0.4
capture = cv2.VideoCapture(path)
fps = capture.get(cv2.CAP_PROP_FPS)
size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
#size = (1920, 1440)
print('video fram size: ', size)
save = False
if save_path is not None:
save = True
print('save video to ', save_path)
videoWriter = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'MJPG'), fps, size)
if capture.isOpened():
while True:
ret, frame = capture.read()
if ret == True:
frame = detect(model, frame, conf_thres, iou_thres)
cv2.imshow('video', frame)
if save:
videoWriter.write(frame) # 写视频帧
else:
break
if cv2.waitKey(1) == ord('q'):
break
cv2.destroyAllWindows()
def detect_image(model, path, save_path = None):
conf_thres, iou_thres = 0.4, 0.4
cv2.namedWindow("image",cv2.WINDOW_NORMAL)
frame = cv2.imread(path)
frame = detect(model, frame, conf_thres, iou_thres)
if save_path is not None:
cv2.imwrite(save_path, frame)
cv2.imshow('image', frame)
if cv2.waitKey(0) == ord('q'):
cv2.destroyAllWindows()
if __name__ == '__main__':
#detect_test()
weights = './runs/train/exp48/weights/last.pt'
model = get_model(weights)
video_path = '../sample/20211028_20211028180130_20211028181132_180131.mp4'
save_path = '../sample/save.mp4'
#detect_video(model, video_path, save_path)
image_path = './43eb0e68965711513412c4b051051770.JPG'
detect_image(model, image_path)