-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtokenizer_class.py
128 lines (99 loc) · 4.15 KB
/
tokenizer_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
# Example: Retrieve from pre-built index of SciFact
This script shows how to load an index built with BM25.index and saved with BM25.save, and retrieve
the top-k results for a set of queries from the SciFact dataset, via the BEIR library.
"""
import shutil
import tempfile
import beir.util
from beir.datasets.data_loader import GenericDataLoader
import Stemmer
import bm25s
from bm25s.utils.beir import BASE_URL
from bm25s.tokenization import Tokenizer, Tokenized
def main(data_dir="datasets", dataset="scifact"):
# Load the queries from BEIR
data_path = beir.util.download_and_unzip(BASE_URL.format(dataset), data_dir)
loader = GenericDataLoader(data_folder=data_path)
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split='test')
corpus_lst = [doc["title"] + " " + doc["text"] for doc in corpus.values()]
queries_lst = list(queries.values())
# Initialize the stemmer
stemmer = Stemmer.Stemmer("english")
# Initialize the Tokenizer with the stemmer
tokenizer = Tokenizer(
stemmer=stemmer,
lower=True, # lowercase the tokens
stopwords="english", # or pass a list of stopwords
splitter=r"\w+", # by default r"(?u)\b\w\w+\b", can also be a function
)
# Tokenize the corpus
corpus_tokenized = tokenizer.tokenize(
corpus_lst,
update_vocab=True, # update the vocab as we tokenize
return_as="ids"
)
# stream tokenizing the queries, without updating the vocabulary
# note: this cannot return as string due to the streaming nature
tokenizer_stream = tokenizer.streaming_tokenize(
queries_lst,
update_vocab=False
)
query_ids = []
for q in tokenizer_stream:
# you can do something with the ids here, e.g. retrieve from the index
if 1 in q:
query_ids.append(q)
# you can convert the ids to a Tokenized namedtuple ids and tokens...
res = tokenizer.to_tokenized_tuple(query_ids)
# ... which is equivalent to:
# tokenizer.tokenize(your_query_lst, return_as="tuple", update_vocab=False)
# You can verify the results
assert res.ids == query_ids
assert res.vocab == tokenizer.get_vocab_dict()
assert isinstance(res, Tokenized)
# You can also get strings
query_strs = tokenizer.decode(query_ids)
# ... which is equivalent to:
# tokenizer.tokenize(your_query_lst, return_as="string", update_vocab=False)
# let's verify the results
assert isinstance(query_strs, list)
assert isinstance(query_strs[0], list)
assert isinstance(query_strs[0][0], str)
# Let's see how it's all used
retriever = bm25s.BM25()
retriever.index(corpus_tokenized, leave_progress=False)
# all of the above can be passed to index a bm25s model
# e.g. using the ids directly
results, scores = retriever.retrieve(query_ids, k=3)
# or passing the strings
results, scores = retriever.retrieve(query_strs, k=3)
# or passing the Tokenized namedtuple
results, scores = retriever.retrieve(res, k=3)
# or passing a tuple of ids and vocab dict
vocab_dict = tokenizer.get_vocab_dict()
results, scores = retriever.retrieve((query_ids, vocab_dict), k=3)
# If you want, you can save the vocab and stopwords, it can be the same dir as your index
your_index_dir = tempfile.mkdtemp()
tokenizer.save_vocab(save_dir=your_index_dir)
# Unhappy with your vocab? you can reset your tokenizer
tokenizer.reset_vocab()
# loading:
new_tokenizer = Tokenizer(
stemmer=stemmer,
lower=True,
stopwords=[],
splitter=r"\w+",
)
print("Vocabulary size before reloading:", len(new_tokenizer.get_vocab_dict()))
new_tokenizer.load_vocab(your_index_dir)
print("Vocabulary size after reloading:", len(new_tokenizer.get_vocab_dict()))
# the same can be done for stopwords
print("stopwords before reloading:", new_tokenizer.stopwords)
tokenizer.save_stopwords(save_dir=your_index_dir)
new_tokenizer.load_stopwords(your_index_dir)
print("stopwords after reloaded:", new_tokenizer.stopwords)
# cleanup
shutil.rmtree(your_index_dir)
if __name__ == "__main__":
main()