-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathretrieve_from_hf.py
57 lines (44 loc) · 1.66 KB
/
retrieve_from_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
# Example: Load index from Hugging Face Hub and retrieve from SciFact dataset
This shows how to load an index from the Hugging Face Hub created with BM25HF.index and
saved with BM25HF.save_to_hub. We will retrieve the top-k results for custom queries.
To run this example, you need to install the following dependencies:
```bash
pip install bm25s[full]
```
To build an index, please refer to the `examples/index_and_upload_to_hf.py` script. You
can run this script with:
```bash
python examples/index_and_upload_to_hf.py
```
Then, run this script with:
```bash
python examples/retrieve_from_hf.py
```
"""
import os
import Stemmer
import bm25s.hf
def main(user, repo_name="bm25s-scifact-index"):
queries = [
"Is chemotherapy effective for treating cancer?",
"Is Cardiac injury is common in critical cases of COVID-19?",
]
# Load the BM25 index from Hugging Face Hub
# mmap=True helps to reduce memory usage by memory-mapping the index
# load_corpus=True loads the corpus along with the index, so you can access the documents
retriever = bm25s.hf.BM25HF.load_from_hub(
f"{user}/{repo_name}", load_corpus=True, mmap=True
)
# Tokenize the queries
stemmer = Stemmer.Stemmer("english")
queries_tokenized = bm25s.tokenize(queries, stemmer=stemmer)
# Retrieve the top-k results
results = retriever.retrieve(queries_tokenized, k=3)
# show first results
result = results.documents[0]
print(f"First score (# 1 result):{results.scores[0, 0]}")
print(f"First result (# 1 result):\n{result[0]}")
if __name__ == "__main__":
user = os.getenv("HF_USERNAME", "write-your-username-here")
main(user=user)