This repository has been archived by the owner on Nov 7, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
fft_fftw3.f90
724 lines (549 loc) · 20.3 KB
/
fft_fftw3.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
!=======================================================================
! This is part of the 2DECOMP&FFT library
!
! 2DECOMP&FFT is a software framework for general-purpose 2D (pencil)
! decomposition. It also implements a highly scalable distributed
! three-dimensional Fast Fourier Transform (FFT).
!
! Copyright (C) 2009-2011 Ning Li, the Numerical Algorithms Group (NAG)
!
!=======================================================================
! This is the FFTW (version 3.x) implementation of the FFT library
module decomp_2d_fft
use decomp_2d ! 2D decomposition module
implicit none
include "fftw3.f"
private ! Make everything private unless declared public
! engine-specific global variables
integer, save :: plan_type = FFTW_MEASURE
! FFTW plans
! j=1,2,3 corresponds to the 1D FFTs in X,Y,Z direction, respectively
! For c2c transforms:
! use plan(-1,j) for forward transform;
! use plan( 1,j) for backward transform;
! For r2c/c2r transforms:
! use plan(0,j) for r2c transforms;
! use plan(2,j) for c2r transforms;
integer*8, save :: plan(-1:2,3)
! common code used for all engines, including global variables,
! generic interface definitions and several subroutines
#include "fft_common.f90"
! Return a FFTW3 plan for multiple 1D c2c FFTs in X direction
subroutine c2c_1m_x_plan(plan1, decomp, isign)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp
integer, intent(IN) :: isign
complex(mytype), allocatable, dimension(:,:,:) :: a1
allocate(a1(decomp%xsz(1),decomp%xsz(2),decomp%xsz(3)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft(plan1, 1, decomp%xsz(1), &
decomp%xsz(2)*decomp%xsz(3), a1, decomp%xsz(1), 1, &
decomp%xsz(1), a1, decomp%xsz(1), 1, decomp%xsz(1), &
isign, plan_type)
#else
call sfftw_plan_many_dft(plan1, 1, decomp%xsz(1), &
decomp%xsz(2)*decomp%xsz(3), a1, decomp%xsz(1), 1, &
decomp%xsz(1), a1, decomp%xsz(1), 1, decomp%xsz(1), &
isign, plan_type)
#endif
deallocate(a1)
return
end subroutine c2c_1m_x_plan
! Return a FFTW3 plan for multiple 1D c2c FFTs in Y direction
subroutine c2c_1m_y_plan(plan1, decomp, isign)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp
integer, intent(IN) :: isign
complex(mytype), allocatable, dimension(:,:) :: a1
! Due to memory pattern of 3D arrays, 1D FFTs along Y have to be
! done one Z-plane at a time. So plan for 2D data sets here.
allocate(a1(decomp%ysz(1),decomp%ysz(2)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft(plan1, 1, decomp%ysz(2), decomp%ysz(1), &
a1, decomp%ysz(2), decomp%ysz(1), 1, a1, decomp%ysz(2), &
decomp%ysz(1), 1, isign, plan_type)
#else
call sfftw_plan_many_dft(plan1, 1, decomp%ysz(2), decomp%ysz(1), &
a1, decomp%ysz(2), decomp%ysz(1), 1, a1, decomp%ysz(2), &
decomp%ysz(1), 1, isign, plan_type)
#endif
deallocate(a1)
return
end subroutine c2c_1m_y_plan
! Return a FFTW3 plan for multiple 1D c2c FFTs in Z direction
subroutine c2c_1m_z_plan(plan1, decomp, isign)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp
integer, intent(IN) :: isign
complex(mytype), allocatable, dimension(:,:,:) :: a1
allocate(a1(decomp%zsz(1),decomp%zsz(2),decomp%zsz(3)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft(plan1, 1, decomp%zsz(3), &
decomp%zsz(1)*decomp%zsz(2), a1, decomp%zsz(3), &
decomp%zsz(1)*decomp%zsz(2), 1, a1, decomp%zsz(3), &
decomp%zsz(1)*decomp%zsz(2), 1, isign, plan_type)
#else
call sfftw_plan_many_dft(plan1, 1, decomp%zsz(3), &
decomp%zsz(1)*decomp%zsz(2), a1, decomp%zsz(3), &
decomp%zsz(1)*decomp%zsz(2), 1, a1, decomp%zsz(3), &
decomp%zsz(1)*decomp%zsz(2), 1, isign, plan_type)
#endif
deallocate(a1)
return
end subroutine c2c_1m_z_plan
! Return a FFTW3 plan for multiple 1D r2c FFTs in X direction
subroutine r2c_1m_x_plan(plan1, decomp_ph, decomp_sp)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp_ph
TYPE(DECOMP_INFO), intent(IN) :: decomp_sp
real(mytype), allocatable, dimension(:,:,:) :: a1
complex(mytype), allocatable, dimension(:,:,:) :: a2
allocate(a1(decomp_ph%xsz(1),decomp_ph%xsz(2),decomp_ph%xsz(3)))
allocate(a2(decomp_sp%xsz(1),decomp_sp%xsz(2),decomp_sp%xsz(3)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft_r2c(plan1, 1, decomp_ph%xsz(1), &
decomp_ph%xsz(2)*decomp_ph%xsz(3), a1, decomp_ph%xsz(1), 1, &
decomp_ph%xsz(1), a2, decomp_sp%xsz(1), 1, decomp_sp%xsz(1), &
plan_type)
#else
call sfftw_plan_many_dft_r2c(plan1, 1, decomp_ph%xsz(1), &
decomp_ph%xsz(2)*decomp_ph%xsz(3), a1, decomp_ph%xsz(1), 1, &
decomp_ph%xsz(1), a2, decomp_sp%xsz(1), 1, decomp_sp%xsz(1), &
plan_type)
#endif
deallocate(a1,a2)
return
end subroutine r2c_1m_x_plan
! Return a FFTW3 plan for multiple 1D c2r FFTs in X direction
subroutine c2r_1m_x_plan(plan1, decomp_sp, decomp_ph)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp_sp
TYPE(DECOMP_INFO), intent(IN) :: decomp_ph
complex(mytype), allocatable, dimension(:,:,:) :: a1
real(mytype), allocatable, dimension(:,:,:) :: a2
allocate(a1(decomp_sp%xsz(1),decomp_sp%xsz(2),decomp_sp%xsz(3)))
allocate(a2(decomp_ph%xsz(1),decomp_ph%xsz(2),decomp_ph%xsz(3)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft_c2r(plan1, 1, decomp_ph%xsz(1), &
decomp_ph%xsz(2)*decomp_ph%xsz(3), a1, decomp_sp%xsz(1), 1, &
decomp_sp%xsz(1), a2, decomp_ph%xsz(1), 1, decomp_ph%xsz(1), &
plan_type)
#else
call sfftw_plan_many_dft_c2r(plan1, 1, decomp_ph%xsz(1), &
decomp_ph%xsz(2)*decomp_ph%xsz(3), a1, decomp_sp%xsz(1), 1, &
decomp_sp%xsz(1), a2, decomp_ph%xsz(1), 1, decomp_ph%xsz(1), &
plan_type)
#endif
deallocate(a1,a2)
return
end subroutine c2r_1m_x_plan
! Return a FFTW3 plan for multiple 1D r2c FFTs in Z direction
subroutine r2c_1m_z_plan(plan1, decomp_ph, decomp_sp)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp_ph
TYPE(DECOMP_INFO), intent(IN) :: decomp_sp
real(mytype), allocatable, dimension(:,:,:) :: a1
complex(mytype), allocatable, dimension(:,:,:) :: a2
allocate(a1(decomp_ph%zsz(1),decomp_ph%zsz(2),decomp_ph%zsz(3)))
allocate(a2(decomp_sp%zsz(1),decomp_sp%zsz(2),decomp_sp%zsz(3)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft_r2c(plan1, 1, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), a1, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), 1, a2, decomp_sp%zsz(3), &
decomp_sp%zsz(1)*decomp_sp%zsz(2), 1, plan_type)
#else
call sfftw_plan_many_dft_r2c(plan1, 1, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), a1, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), 1, a2, decomp_sp%zsz(3), &
decomp_sp%zsz(1)*decomp_sp%zsz(2), 1, plan_type)
#endif
deallocate(a1,a2)
return
end subroutine r2c_1m_z_plan
! Return a FFTW3 plan for multiple 1D c2r FFTs in Z direction
subroutine c2r_1m_z_plan(plan1, decomp_sp, decomp_ph)
implicit none
integer*8, intent(OUT) :: plan1
TYPE(DECOMP_INFO), intent(IN) :: decomp_sp
TYPE(DECOMP_INFO), intent(IN) :: decomp_ph
complex(mytype), allocatable, dimension(:,:,:) :: a1
real(mytype), allocatable, dimension(:,:,:) :: a2
allocate(a1(decomp_sp%zsz(1),decomp_sp%zsz(2),decomp_sp%zsz(3)))
allocate(a2(decomp_ph%zsz(1),decomp_ph%zsz(2),decomp_ph%zsz(3)))
#ifdef DOUBLE_PREC
call dfftw_plan_many_dft_c2r(plan1, 1, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), a1, decomp_sp%zsz(3), &
decomp_sp%zsz(1)*decomp_sp%zsz(2), 1, a2, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), 1, plan_type)
#else
call sfftw_plan_many_dft_c2r(plan1, 1, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), a1, decomp_sp%zsz(3), &
decomp_sp%zsz(1)*decomp_sp%zsz(2), 1, a2, decomp_ph%zsz(3), &
decomp_ph%zsz(1)*decomp_ph%zsz(2), 1, plan_type)
#endif
deallocate(a1,a2)
return
end subroutine c2r_1m_z_plan
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! This routine performs one-time initialisations for the FFT engine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine init_fft_engine
implicit none
if (nrank==0) then
write(*,*) ' '
write(*,*) '***** Using the FFTW (version 3.x) engine *****'
write(*,*) ' '
end if
if (format == PHYSICAL_IN_X) then
! For C2C transforms
call c2c_1m_x_plan(plan(-1,1), ph, FFTW_FORWARD )
call c2c_1m_y_plan(plan(-1,2), ph, FFTW_FORWARD )
call c2c_1m_z_plan(plan(-1,3), ph, FFTW_FORWARD )
call c2c_1m_z_plan(plan( 1,3), ph, FFTW_BACKWARD)
call c2c_1m_y_plan(plan( 1,2), ph, FFTW_BACKWARD)
call c2c_1m_x_plan(plan( 1,1), ph, FFTW_BACKWARD)
! For R2C/C2R tranforms
call r2c_1m_x_plan(plan(0,1), ph, sp)
call c2c_1m_y_plan(plan(0,2), sp, FFTW_FORWARD )
call c2c_1m_z_plan(plan(0,3), sp, FFTW_FORWARD )
call c2c_1m_z_plan(plan(2,3), sp, FFTW_BACKWARD)
call c2c_1m_y_plan(plan(2,2), sp, FFTW_BACKWARD)
call c2r_1m_x_plan(plan(2,1), sp, ph)
else if (format == PHYSICAL_IN_Z) then
! For C2C transforms
call c2c_1m_z_plan(plan(-1,3), ph, FFTW_FORWARD )
call c2c_1m_y_plan(plan(-1,2), ph, FFTW_FORWARD )
call c2c_1m_x_plan(plan(-1,1), ph, FFTW_FORWARD )
call c2c_1m_x_plan(plan( 1,1), ph, FFTW_BACKWARD)
call c2c_1m_y_plan(plan( 1,2), ph, FFTW_BACKWARD)
call c2c_1m_z_plan(plan( 1,3), ph, FFTW_BACKWARD)
! For R2C/C2R tranforms
call r2c_1m_z_plan(plan(0,3), ph, sp)
call c2c_1m_y_plan(plan(0,2), sp, FFTW_FORWARD )
call c2c_1m_x_plan(plan(0,1), sp, FFTW_FORWARD )
call c2c_1m_x_plan(plan(2,1), sp, FFTW_BACKWARD)
call c2c_1m_y_plan(plan(2,2), sp, FFTW_BACKWARD)
call c2r_1m_z_plan(plan(2,3), sp, ph)
end if
return
end subroutine init_fft_engine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! This routine performs one-time finalisations for the FFT engine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine finalize_fft_engine
implicit none
integer :: i,j
do j=1,3
do i=-1,2
#ifdef DOUBLE_PREC
call dfftw_destroy_plan(plan(i,j))
#else
call sfftw_destroy_plan(plan(i,j))
#endif
end do
end do
return
end subroutine finalize_fft_engine
! Following routines calculate multiple one-dimensional FFTs to form
! the basis of three-dimensional FFTs.
! c2c transform, multiple 1D FFTs in x direction
subroutine c2c_1m_x(inout, isign, plan1)
implicit none
complex(mytype), dimension(:,:,:), intent(INOUT) :: inout
integer, intent(IN) :: isign
integer*8, intent(IN) :: plan1
#ifdef DOUBLE_PREC
call dfftw_execute_dft(plan1, inout, inout)
#else
call sfftw_execute_dft(plan1, inout, inout)
#endif
return
end subroutine c2c_1m_x
! c2c transform, multiple 1D FFTs in y direction
subroutine c2c_1m_y(inout, isign, plan1)
implicit none
complex(mytype), dimension(:,:,:), intent(INOUT) :: inout
integer, intent(IN) :: isign
integer*8, intent(IN) :: plan1
integer :: k, s3
! transform on one Z-plane at a time
s3 = size(inout,3)
do k=1,s3
#ifdef DOUBLE_PREC
call dfftw_execute_dft(plan1, inout(:,:,k), inout(:,:,k))
#else
call sfftw_execute_dft(plan1, inout(:,:,k), inout(:,:,k))
#endif
end do
return
end subroutine c2c_1m_y
! c2c transform, multiple 1D FFTs in z direction
subroutine c2c_1m_z(inout, isign, plan1)
implicit none
complex(mytype), dimension(:,:,:), intent(INOUT) :: inout
integer, intent(IN) :: isign
integer*8, intent(IN) :: plan1
#ifdef DOUBLE_PREC
call dfftw_execute_dft(plan1, inout, inout)
#else
call sfftw_execute_dft(plan1, inout, inout)
#endif
return
end subroutine c2c_1m_z
! r2c transform, multiple 1D FFTs in x direction
subroutine r2c_1m_x(input, output)
implicit none
real(mytype), dimension(:,:,:), intent(IN) :: input
complex(mytype), dimension(:,:,:), intent(OUT) :: output
#ifdef DOUBLE_PREC
call dfftw_execute_dft_r2c(plan(0,1), input, output)
#else
call sfftw_execute_dft_r2c(plan(0,1), input, output)
#endif
return
end subroutine r2c_1m_x
! r2c transform, multiple 1D FFTs in z direction
subroutine r2c_1m_z(input, output)
implicit none
real(mytype), dimension(:,:,:), intent(IN) :: input
complex(mytype), dimension(:,:,:), intent(OUT) :: output
#ifdef DOUBLE_PREC
call dfftw_execute_dft_r2c(plan(0,3), input, output)
#else
call sfftw_execute_dft_r2c(plan(0,3), input, output)
#endif
return
end subroutine r2c_1m_z
! c2r transform, multiple 1D FFTs in x direction
subroutine c2r_1m_x(input, output)
implicit none
complex(mytype), dimension(:,:,:), intent(IN) :: input
real(mytype), dimension(:,:,:), intent(OUT) :: output
#ifdef DOUBLE_PREC
call dfftw_execute_dft_c2r(plan(2,1), input, output)
#else
call sfftw_execute_dft_c2r(plan(2,1), input, output)
#endif
return
end subroutine c2r_1m_x
! c2r transform, multiple 1D FFTs in z direction
subroutine c2r_1m_z(input, output)
implicit none
complex(mytype), dimension(:,:,:), intent(IN) :: input
real(mytype), dimension(:,:,:), intent(OUT) :: output
#ifdef DOUBLE_PREC
call dfftw_execute_dft_c2r(plan(2,3), input, output)
#else
call sfftw_execute_dft_c2r(plan(2,3), input, output)
#endif
return
end subroutine c2r_1m_z
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 3D FFT - complex to complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fft_3d_c2c(in, out, isign)
implicit none
complex(mytype), dimension(:,:,:), intent(INOUT) :: in
complex(mytype), dimension(:,:,:), intent(OUT) :: out
integer, intent(IN) :: isign
#ifndef OVERWRITE
complex(mytype), allocatable, dimension(:,:,:) :: wk1
#endif
if (format==PHYSICAL_IN_X .AND. isign==DECOMP_2D_FFT_FORWARD .OR. &
format==PHYSICAL_IN_Z .AND. isign==DECOMP_2D_FFT_BACKWARD) then
! ===== 1D FFTs in X =====
#ifdef OVERWRITE
call c2c_1m_x(in,isign,plan(isign,1))
#else
allocate (wk1(ph%xsz(1),ph%xsz(2),ph%xsz(3)))
wk1 = in
call c2c_1m_x(wk1,isign,plan(isign,1))
#endif
! ===== Swap X --> Y; 1D FFTs in Y =====
if (dims(1)>1) then
#ifdef OVERWRITE
call transpose_x_to_y(in,wk2_c2c,ph)
#else
call transpose_x_to_y(wk1,wk2_c2c,ph)
#endif
call c2c_1m_y(wk2_c2c,isign,plan(isign,2))
else
#ifdef OVERWRITE
call c2c_1m_y(in,isign,plan(isign,2))
#else
call c2c_1m_y(wk1,isign,plan(isign,2))
#endif
end if
! ===== Swap Y --> Z; 1D FFTs in Z =====
if (dims(1)>1) then
call transpose_y_to_z(wk2_c2c,out,ph)
else
#ifdef OVERWRITE
call transpose_y_to_z(in,out,ph)
#else
call transpose_y_to_z(wk1,out,ph)
#endif
end if
call c2c_1m_z(out,isign,plan(isign,3))
else if (format==PHYSICAL_IN_X .AND. isign==DECOMP_2D_FFT_BACKWARD &
.OR. &
format==PHYSICAL_IN_Z .AND. isign==DECOMP_2D_FFT_FORWARD) then
! ===== 1D FFTs in Z =====
#ifdef OVERWRITE
call c2c_1m_z(in,isign,plan(isign,3))
#else
allocate (wk1(ph%zsz(1),ph%zsz(2),ph%zsz(3)))
wk1 = in
call c2c_1m_z(wk1,isign,plan(isign,3))
#endif
! ===== Swap Z --> Y; 1D FFTs in Y =====
if (dims(1)>1) then
#ifdef OVERWRITE
call transpose_z_to_y(in,wk2_c2c,ph)
#else
call transpose_z_to_y(wk1,wk2_c2c,ph)
#endif
call c2c_1m_y(wk2_c2c,isign,plan(isign,2))
else ! out==wk2_c2c if 1D decomposition
#ifdef OVERWRITE
call transpose_z_to_y(in,out,ph)
#else
call transpose_z_to_y(wk1,out,ph)
#endif
call c2c_1m_y(out,isign,plan(isign,2))
end if
! ===== Swap Y --> X; 1D FFTs in X =====
if (dims(1)>1) then
call transpose_y_to_x(wk2_c2c,out,ph)
end if
call c2c_1m_x(out,isign,plan(isign,1))
end if
#ifndef OVERWRITE
deallocate (wk1)
#endif
return
end subroutine fft_3d_c2c
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 3D forward FFT - real to complex
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fft_3d_r2c(in_r, out_c)
implicit none
real(mytype), dimension(:,:,:), intent(IN) :: in_r
complex(mytype), dimension(:,:,:), intent(OUT) :: out_c
if (format==PHYSICAL_IN_X) then
! ===== 1D FFTs in X =====
call r2c_1m_x(in_r,wk13)
! ===== Swap X --> Y; 1D FFTs in Y =====
if (dims(1)>1) then
call transpose_x_to_y(wk13,wk2_r2c,sp)
call c2c_1m_y(wk2_r2c,-1,plan(0,2))
else
call c2c_1m_y(wk13,-1,plan(0,2))
end if
! ===== Swap Y --> Z; 1D FFTs in Z =====
if (dims(1)>1) then
call transpose_y_to_z(wk2_r2c,out_c,sp)
else
call transpose_y_to_z(wk13,out_c,sp)
end if
call c2c_1m_z(out_c,-1,plan(0,3))
else if (format==PHYSICAL_IN_Z) then
! ===== 1D FFTs in Z =====
call r2c_1m_z(in_r,wk13)
! ===== Swap Z --> Y; 1D FFTs in Y =====
if (dims(1)>1) then
call transpose_z_to_y(wk13,wk2_r2c,sp)
call c2c_1m_y(wk2_r2c,-1,plan(0,2))
else ! out_c==wk2_r2c if 1D decomposition
call transpose_z_to_y(wk13,out_c,sp)
call c2c_1m_y(out_c,-1,plan(0,2))
end if
! ===== Swap Y --> X; 1D FFTs in X =====
if (dims(1)>1) then
call transpose_y_to_x(wk2_r2c,out_c,sp)
end if
call c2c_1m_x(out_c,-1,plan(0,1))
end if
return
end subroutine fft_3d_r2c
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 3D inverse FFT - complex to real
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fft_3d_c2r(in_c, out_r)
implicit none
complex(mytype), dimension(:,:,:), intent(INOUT) :: in_c
real(mytype), dimension(:,:,:), intent(OUT) :: out_r
#ifndef OVERWRITE
complex(mytype), allocatable, dimension(:,:,:) :: wk1
#endif
if (format==PHYSICAL_IN_X) then
! ===== 1D FFTs in Z =====
#ifdef OVERWRITE
call c2c_1m_z(in_c,1,plan(2,3))
#else
allocate (wk1(sp%zsz(1),sp%zsz(2),sp%zsz(3)))
wk1 = in_c
call c2c_1m_z(wk1,1,plan(2,3))
#endif
! ===== Swap Z --> Y; 1D FFTs in Y =====
#ifdef OVERWRITE
call transpose_z_to_y(in_c,wk2_r2c,sp)
#else
call transpose_z_to_y(wk1,wk2_r2c,sp)
#endif
call c2c_1m_y(wk2_r2c,1,plan(2,2))
! ===== Swap Y --> X; 1D FFTs in X =====
if (dims(1)>1) then
call transpose_y_to_x(wk2_r2c,wk13,sp)
call c2r_1m_x(wk13,out_r)
else
call c2r_1m_x(wk2_r2c,out_r)
end if
else if (format==PHYSICAL_IN_Z) then
! ===== 1D FFTs in X =====
#ifdef OVERWRITE
call c2c_1m_x(in_c,1,plan(2,1))
#else
allocate(wk1(sp%xsz(1),sp%xsz(2),sp%xsz(3)))
wk1 = in_c
call c2c_1m_x(wk1,1,plan(2,1))
#endif
! ===== Swap X --> Y; 1D FFTs in Y =====
if (dims(1)>1) then
#ifdef OVERWRITE
call transpose_x_to_y(in_c,wk2_r2c,sp)
#else
call transpose_x_to_y(wk1,wk2_r2c,sp)
#endif
call c2c_1m_y(wk2_r2c,1,plan(2,2))
else ! in_c==wk2_r2c if 1D decomposition
#ifdef OVERWRITE
call c2c_1m_y(in_c,1,plan(2,2))
#else
call c2c_1m_y(wk1,1,plan(2,2))
#endif
end if
! ===== Swap Y --> Z; 1D FFTs in Z =====
if (dims(1)>1) then
call transpose_y_to_z(wk2_r2c,wk13,sp)
else
#ifdef OVERWRITE
call transpose_y_to_z(in_c,wk13,sp)
#else
call transpose_y_to_z(wk1,wk13,sp)
#endif
end if
call c2r_1m_z(wk13,out_r)
end if
#ifndef OVERWRITE
deallocate (wk1)
#endif
return
end subroutine fft_3d_c2r
end module decomp_2d_fft