forked from ZiyaoGeng/RecLearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
72 lines (61 loc) · 2.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Created on Nov 13, 2020
Updated on Dec 20, 2020
train BPR model
@author: Ziyao Geng([email protected])
"""
import os
import pandas as pd
import tensorflow as tf
from time import time
from tensorflow.keras.optimizers import Adam
from model import BPR
from evaluate import *
from utils import *
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
if __name__ == '__main__':
# =============================== GPU ==============================
# gpu = tf.config.experimental.list_physical_devices(device_type='GPU')
# print(gpu)
os.environ['CUDA_VISIBLE_DEVICES'] = '6, 7'
# ========================= Hyper Parameters =======================
file = '../dataset/ml-1m/ratings.dat'
trans_score = 1
test_neg_num = 100
embed_dim = 64
mode = 'inner' # dist
embed_reg = 1e-6 # 1e-6
K = 10
learning_rate = 0.001
epochs = 20
batch_size = 512
# ========================== Create dataset =======================
feature_columns, train, val, test = create_ml_1m_dataset(file, trans_score, embed_dim, test_neg_num)
# ============================Build Model==========================
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
model = BPR(feature_columns, mode, embed_reg)
model.summary()
# =========================Compile============================
model.compile(optimizer=Adam(learning_rate=learning_rate))
results = []
for epoch in range(1, epochs + 1):
# ===========================Fit==============================
t1 = time()
model.fit(
train,
None,
validation_data=(val, None),
epochs=1,
batch_size=batch_size,
)
# ===========================Test==============================
t2 = time()
if epoch % 5 == 0:
hit_rate, ndcg = evaluate_model(model, test, K)
print('Iteration %d Fit [%.1f s], Evaluate [%.1f s]: HR = %.4f, NDCG = %.4f'
% (epoch, t2 - t1, time() - t2, hit_rate, ndcg))
results.append([epoch, t2 - t1, time() - t2, hit_rate, ndcg])
# ========================== Write Log ===========================
pd.DataFrame(results, columns=['Iteration', 'fit_time', 'evaluate_time', 'hit_rate', 'ndcg'])\
.to_csv('log/BPR_log_dim_{}_mode_{}_K_{}.csv'.format(embed_dim, mode, K), index=False)