-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbackdoor_exp.py
263 lines (198 loc) · 7.3 KB
/
backdoor_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import time
import shutil
import copy
import tensorflow.keras
import math
from lime.utils.generic_utils import cal_iou, cal_dist
from scipy.interpolate import griddata
from scipy.interpolate import Rbf
from scipy.spatial import distance
from PIL import Image, ImageOps
from backdoor.GTSRB import GTRSRB
from backdoor.trojannet import TrojanNet
import matplotlib.pyplot as plt
import numpy as np
from lime import lime_image
import csv
from lime import calculate_posteriors
from tensorflow.keras.utils import to_categorical
print('Notebook run using keras:', tensorflow.keras.__version__)
def mkdir(path):
folder = os.path.exists(path)
if not folder:
os.makedirs(path)
else:
shutil.rmtree(path)
os.mkdir(path)
patch = np.zeros((6,6,3),dtype=int)
patch[0,0,:] = [82,107,17]
patch[0,1,:] = [176,0,20]
patch[0,2,:] = [240,156,60]
patch[0,3,:] = [249,157,200]
patch[0,4,:] = [208,233,109]
patch[0,5,:] = [34,21,151]
patch[1,0,:] = [110,147,202]
patch[1,1,:] = [250,175,58]
patch[1,2,:] = [114,90,139]
patch[1,3,:] = [146,154,39]
patch[1,4,:] = [41,24,59]
patch[1,5,:] = [68,0,227]
patch[2,0,:] = [193,60,220]
patch[2,1,:] = [204,193,164]
patch[2,2,:] = [153,115,126]
patch[2,3,:] = [183,137,79]
patch[2,4,:] = [221,20,121]
patch[2,5,:] = [111,181,113]
patch[3,0,:] = [177,104,251]
patch[3,1,:] = [109,222,94]
patch[3,2,:] = [22,84,44]
patch[3,3,:] = [107,176,221]
patch[3,4,:] = [37,179,198]
patch[3,5,:] = [127,156,131]
patch[4,0,:] = [137,88,251]
patch[4,1,:] = [42,132,152]
patch[4,2,:] = [229,201,159]
patch[4,3,:] = [26,84,97]
patch[4,4,:] = [170,209,135]
patch[4,5,:] = [78,182,27]
patch[5,0,:] = [125,255,160]
patch[5,1,:] = [132,178,88]
patch[5,2,:] = [22,14,15]
patch[5,3,:] = [141,128,64]
patch[5,4,:] = [29,148,80]
patch[5,5,:] = [61,52,102]
net_model = 'TrojanAttack'
if net_model == 'BadNet':
gtrsrb = GTRSRB()
gtrsrb.cnn_model()
gtrsrb.load_model(name='gtsrb_bottom_right_white_4_target_33.h5')
model = gtrsrb.model
trigger_mask = np.zeros((32, 32), dtype=int)
trigger_mask[27:31, 27:30] = 1
n_s = 1200
n_f = 16
elif net_model == 'TrojanAttack':
gtrsrb = GTRSRB()
gtrsrb.cnn_model()
gtrsrb.load_model(name='GTSRB_trojan.h5')
model = gtrsrb.model
trigger_mask = np.zeros((32, 32), dtype=int)
trigger_mask[24:30,24:30] = 1
n_s = 500
n_f = 9
elif net_model == 'TrojanNet':
gtrsrb = GTRSRB()
gtrsrb.cnn_model()
gtrsrb.load_model(name='GTSRB.h5')
backnet = TrojanNet()
backnet.attack_left_up_point = (27, 27)
backnet.synthesize_backdoor_map(all_point=16, select_point=5)
backnet.trojannet_model()
backnet.load_model('trojannet.h5')
backnet.combine_model(target_model=gtrsrb.model, input_shape=(32, 32, 3), class_num=43, amplify_rate=2)
model = backnet.backdoor_model
image_pattern = backnet.get_inject_pattern(class_num=33)
trigger_mask = np.zeros((32, 32), dtype=int)
trigger_mask[backnet.attack_left_up_point[0]:backnet.attack_left_up_point[0] + 4,
backnet.attack_left_up_point[1]:backnet.attack_left_up_point[1] + 4] = 1
print('loading dataset')
X_train, Y_train, X_test, Y_test = gtrsrb.load_dataset('data/gtsrb_dataset.h5')
print('creating backdoor dataset')
X_backdoor = copy.deepcopy(X_test).astype(float)
X_backdoor[:,24:30, 24:30,:] = patch
Y_backdoor = to_categorical([0] * len(X_backdoor), 43)
ground_truth = np.zeros((32, 32, 3), dtype=int)
ground_truth[24:30,24:30,:] = patch
# plt.imshow(X_backdoor[2600]/255)
# plt.show()
# #
# AA = model.predict(X_backdoor[2000:3000])
print('loading prior map')
im1 = Image.open('backdoor/gtsrb_trojanattack_0.png')
im2 = ImageOps.grayscale(im1)
prior_img = np.array(im2)
# prior_img = copy.deepcopy(trigger_mask)
# plt.imshow(img/255)
# plt.show()
# iou = cal_iou(prior_img, trigger_mask)
# amd = cal_dist(prior_img, trigger_mask)
#
# print(iou)
# print(amd)
grid_x, grid_y = np.mgrid[0:32, 0:32]
idx = np.nonzero(prior_img)
values = np.ones(len(idx[0]))
rbf = Rbf(idx[0], idx[1], values, epsilon=5, function='gaussian') # inverse gaussian
prior = rbf(grid_x, grid_y)
# plt.imsave('p_a.png',prior)
# # evaluate the model
# loss1, acc1 = model.evaluate(X_test, Y_test, verbose=0)
# loss2, acc2 = model.evaluate(X_backdoor, Y_backdoor, verbose=0)
explainer = lime_image.LimeImageExplainer(feature_selection='none') # kernel_width=0.1
l_iou_list = []
b_iou_list = []
l_amd_list = []
b_amd_list = []
mkdir('evaluation_output')
for i in range(500):
print('-----------------------------------')
print('-----------------------------------')
print('No.:', i)
explanation = explainer.explain_instance(X_backdoor[i], model.predict,
top_labels=1, hide_color=0, batch_size=15, segmentation_fn='block',
num_samples= n_s, model_regressor='BayesianRidge_inf_prior_fit_alpha')
temp, lime_mask = explanation.get_image_and_mask(explanation.top_labels[0], num_features=n_f, hide_rest=False)
iou = cal_iou(lime_mask, trigger_mask)
amd = cal_dist(lime_mask, trigger_mask)
# get the prior for each segments
seg_prior = []
seg_n = np.max(explanation.segments) + 1
for j in range(seg_n):
mask = np.where(explanation.segments == j, 0, explanation.segments)
mask = np.where(explanation.segments != j, 1, mask)
seg_prior.append(np.ma.array(prior, mask=mask).mean())
prior_exp = np.flip(np.argsort(abs(np.array(seg_prior))))
prior_mask = np.zeros(explanation.segments.shape, explanation.segments.dtype)
for idx in range(16):
prior_mask[explanation.segments == prior_exp[idx]] = 1
prior_iou = cal_iou(prior_mask,trigger_mask)
prior_amd = cal_dist(prior_mask,trigger_mask)
# update the explanation with prior
alpha_init = 1
lambda_init = 1
with open('./posterior_configure.csv') as csv_file:
csv_reader = csv.reader(csv_file)
line_count = 0
for row in csv_reader:
if line_count == 1:
alpha_init = float(row[0])
lambda_init = float(row[1])
line_count = line_count + 1
explanation = calculate_posteriors.get_posterior(explanation, seg_prior,
hyper_para_alpha=alpha_init,
hyper_para_lambda=lambda_init,
label=explanation.top_labels[0])
temp, baylime_mask = explanation.get_image_and_mask(explanation.top_labels[0], num_features=n_f, hide_rest=False)
baylime_iou = cal_iou(baylime_mask,trigger_mask)
baylime_amd = cal_dist(baylime_mask,trigger_mask)
# create folder to save output file
fname = "evaluation_output/image_" + str(i)
mkdir(fname)
plt.imsave(fname + '/prior.png',prior_mask)
plt.imsave(fname + '/lime.png',lime_mask)
plt.imsave(fname + '/baylime.png',baylime_mask)
l_iou_list.append(iou)
l_amd_list.append(amd)
b_iou_list.append(baylime_iou)
b_amd_list.append(baylime_amd)
print('iou for prior:', prior_iou)
print('amd for prior:', prior_amd)
print('iou for lime:', iou)
print('amd for lime:', amd)
print('iou for baylime:', baylime_iou)
print('amd for baylime:', baylime_amd)
print(np.mean(l_iou_list))
print(np.mean(l_amd_list))
print(np.mean(b_iou_list))
print(np.mean(b_amd_list))