-
Notifications
You must be signed in to change notification settings - Fork 59
/
pgm.py
executable file
·240 lines (210 loc) · 10.2 KB
/
pgm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
import json
import numpy
import pandas
import torch.multiprocessing as mp
from scipy.interpolate import interp1d
def load_json(file):
with open(file) as json_file:
data = json.load(json_file)
return data
def iou_with_anchors(anchors_min,anchors_max,box_min,box_max):
"""Compute jaccard score between a box and the anchors.
"""
len_anchors=anchors_max-anchors_min
int_xmin = numpy.maximum(anchors_min, box_min)
int_xmax = numpy.minimum(anchors_max, box_max)
inter_len = numpy.maximum(int_xmax - int_xmin, 0.)
union_len = len_anchors - inter_len +box_max-box_min
jaccard = numpy.divide(inter_len, union_len)
return jaccard
def ioa_with_anchors(anchors_min,anchors_max,box_min,box_max):
"""Compute intersection between score a box and the anchors.
"""
len_anchors=anchors_max-anchors_min
int_xmin = numpy.maximum(anchors_min, box_min)
int_xmax = numpy.minimum(anchors_max, box_max)
inter_len = numpy.maximum(int_xmax - int_xmin, 0.)
scores = numpy.divide(inter_len, len_anchors)
return scores
def generateProposals(opt,video_list,video_dict):
tscale = opt["temporal_scale"]
tgap = 1./tscale
peak_thres= opt["pgm_threshold"]
for video_name in video_list:
tdf=pandas.read_csv("./output/TEM_results/"+video_name+".csv")
start_scores=tdf.start.values[:]
end_scores=tdf.end.values[:]
max_start = max(start_scores)
max_end = max(end_scores)
start_bins=numpy.zeros(len(start_scores))
start_bins[[0,-1]]=1
for idx in range(1,tscale-1):
if start_scores[idx]>start_scores[idx+1] and start_scores[idx]>start_scores[idx-1]:
start_bins[idx]=1
elif start_scores[idx]>(peak_thres*max_start):
start_bins[idx]=1
end_bins=numpy.zeros(len(end_scores))
end_bins[[0,-1]]=1
for idx in range(1,tscale-1):
if end_scores[idx]>end_scores[idx+1] and end_scores[idx]>end_scores[idx-1]:
end_bins[idx]=1
elif end_scores[idx]>(peak_thres*max_end):
end_bins[idx]=1
xmin_list=[]
xmin_score_list=[]
xmax_list=[]
xmax_score_list=[]
for j in range(tscale):
if start_bins[j]==1:
xmin_list.append(tgap/2+tgap*j)
xmin_score_list.append(start_scores[j])
if end_bins[j]==1:
xmax_list.append(tgap/2+tgap*j)
xmax_score_list.append(end_scores[j])
new_props=[]
for ii in range(len(xmax_list)):
tmp_xmax=xmax_list[ii]
tmp_xmax_score=xmax_score_list[ii]
for ij in range(len(xmin_list)):
tmp_xmin=xmin_list[ij]
tmp_xmin_score=xmin_score_list[ij]
if tmp_xmin>=tmp_xmax:
break
new_props.append([tmp_xmin,tmp_xmax,tmp_xmin_score,tmp_xmax_score])
new_props=numpy.stack(new_props)
col_name=["xmin","xmax","xmin_score","xmax_score"]
new_df=pandas.DataFrame(new_props,columns=col_name)
new_df["score"]=new_df.xmin_score*new_df.xmax_score
new_df=new_df.sort_values(by="score",ascending=False)
video_info=video_dict[video_name]
video_frame=video_info['duration_frame']
video_second=video_info['duration_second']
feature_frame=video_info['feature_frame']
corrected_second=float(feature_frame)/video_frame*video_second
try:
gt_xmins=[]
gt_xmaxs=[]
for idx in range(len(video_info["annotations"])):
gt_xmins.append(video_info["annotations"][idx]["segment"][0]/corrected_second)
gt_xmaxs.append(video_info["annotations"][idx]["segment"][1]/corrected_second)
new_iou_list=[]
for j in range(len(new_df)):
tmp_new_iou=max(iou_with_anchors(new_df.xmin.values[j],new_df.xmax.values[j],gt_xmins,gt_xmaxs))
new_iou_list.append(tmp_new_iou)
new_ioa_list=[]
for j in range(len(new_df)):
tmp_new_ioa=max(ioa_with_anchors(new_df.xmin.values[j],new_df.xmax.values[j],gt_xmins,gt_xmaxs))
new_ioa_list.append(tmp_new_ioa)
new_df["match_iou"]=new_iou_list
new_df["match_ioa"]=new_ioa_list
except:
pass
new_df.to_csv("./output/PGM_proposals/"+video_name+".csv",index=False)
def getDatasetDict(opt):
df=pandas.read_csv(opt["video_info"])
json_data= load_json(opt["video_anno"])
database=json_data
video_dict = {}
for i in range(len(df)):
video_name=df.video.values[i]
video_info=database[video_name]
video_new_info={}
video_new_info['duration_frame']=video_info['duration_frame']
video_new_info['duration_second']=video_info['duration_second']
video_new_info["feature_frame"]=video_info['feature_frame']
video_new_info['annotations']=video_info['annotations']
video_new_info['subset'] = df.subset.values[i]
video_dict[video_name]=video_new_info
return video_dict
def generateFeature(opt,video_list,video_dict):
num_sample_start=opt["num_sample_start"]
num_sample_end=opt["num_sample_end"]
num_sample_action=opt["num_sample_action"]
num_sample_interpld = opt["num_sample_interpld"]
for video_name in video_list:
adf=pandas.read_csv("./output/TEM_results/"+video_name+".csv")
score_action=adf.action.values[:]
seg_xmins = adf.xmin.values[:]
seg_xmaxs = adf.xmax.values[:]
video_scale = len(adf)
video_gap = seg_xmaxs[0] - seg_xmins[0]
video_extend = video_scale / 4 + 10
pdf=pandas.read_csv("./output/PGM_proposals/"+video_name+".csv")
video_subset = video_dict[video_name]['subset']
if video_subset == "training":
pdf=pdf[:opt["pem_top_K"]]
else:
pdf=pdf[:opt["pem_top_K_inference"]]
tmp_zeros=numpy.zeros([video_extend])
score_action=numpy.concatenate((tmp_zeros,score_action,tmp_zeros))
tmp_cell = video_gap
tmp_x = [-tmp_cell/2-(video_extend-1-ii)*tmp_cell for ii in range(video_extend)] + \
[tmp_cell/2+ii*tmp_cell for ii in range(video_scale)] + \
[tmp_cell/2+seg_xmaxs[-1] +ii*tmp_cell for ii in range(video_extend)]
f_action=interp1d(tmp_x,score_action,axis=0)
feature_bsp=[]
for idx in range(len(pdf)):
xmin=pdf.xmin.values[idx]
xmax=pdf.xmax.values[idx]
xlen=xmax-xmin
xmin_0=xmin-xlen * opt["bsp_boundary_ratio"]
xmin_1=xmin+xlen * opt["bsp_boundary_ratio"]
xmax_0=xmax-xlen * opt["bsp_boundary_ratio"]
xmax_1=xmax+xlen * opt["bsp_boundary_ratio"]
#start
plen_start= (xmin_1-xmin_0)/(num_sample_start-1)
plen_sample = plen_start / num_sample_interpld
tmp_x_new = [ xmin_0 - plen_start/2 + plen_sample * ii for ii in range(num_sample_start*num_sample_interpld +1 )]
tmp_y_new_start_action=f_action(tmp_x_new)
tmp_y_new_start = [numpy.mean(tmp_y_new_start_action[ii*num_sample_interpld:(ii+1)*num_sample_interpld+1]) for ii in range(num_sample_start) ]
#end
plen_end= (xmax_1-xmax_0)/(num_sample_end-1)
plen_sample = plen_end / num_sample_interpld
tmp_x_new = [ xmax_0 - plen_end/2 + plen_sample * ii for ii in range(num_sample_end*num_sample_interpld +1 )]
tmp_y_new_end_action=f_action(tmp_x_new)
tmp_y_new_end = [numpy.mean(tmp_y_new_end_action[ii*num_sample_interpld:(ii+1)*num_sample_interpld+1]) for ii in range(num_sample_end) ]
#action
plen_action= (xmax-xmin)/(num_sample_action-1)
plen_sample = plen_action / num_sample_interpld
tmp_x_new = [ xmin - plen_action/2 + plen_sample * ii for ii in range(num_sample_action*num_sample_interpld +1 )]
tmp_y_new_action=f_action(tmp_x_new)
tmp_y_new_action = [numpy.mean(tmp_y_new_action[ii*num_sample_interpld:(ii+1)*num_sample_interpld+1]) for ii in range(num_sample_action) ]
tmp_feature = numpy.concatenate([tmp_y_new_action,tmp_y_new_start,tmp_y_new_end])
feature_bsp.append(tmp_feature)
feature_bsp = numpy.array(feature_bsp)
numpy.save("./output/PGM_feature/"+video_name,feature_bsp)
def PGM_proposal_generation(opt):
video_dict= load_json(opt["video_anno"])
video_list=video_dict.keys()#[:199]
num_videos = len(video_list)
num_videos_per_thread = num_videos/opt["pgm_thread"]
processes = []
for tid in range(opt["pgm_thread"]-1):
tmp_video_list = video_list[tid*num_videos_per_thread:(tid+1)*num_videos_per_thread]
p = mp.Process(target = generateProposals,args =(opt,tmp_video_list,video_dict,))
p.start()
processes.append(p)
tmp_video_list = video_list[(opt["pgm_thread"]-1)*num_videos_per_thread:]
p = mp.Process(target = generateProposals,args =(opt,tmp_video_list,video_dict,))
p.start()
processes.append(p)
for p in processes:
p.join()
def PGM_feature_generation(opt):
video_dict=getDatasetDict(opt)
video_list=video_dict.keys()
num_videos = len(video_list)
num_videos_per_thread = num_videos/opt["pgm_thread"]
processes = []
for tid in range(opt["pgm_thread"]-1):
tmp_video_list = video_list[tid*num_videos_per_thread:(tid+1)*num_videos_per_thread]
p = mp.Process(target = generateFeature,args =(opt,tmp_video_list,video_dict,))
p.start()
processes.append(p)
tmp_video_list = video_list[(opt["pgm_thread"]-1)*num_videos_per_thread:]
p = mp.Process(target = generateFeature,args =(opt,tmp_video_list,video_dict,))
p.start()
processes.append(p)
for p in processes:
p.join()