Skip to content

Latest commit

 

History

History
336 lines (256 loc) · 10.7 KB

Etl_in_loading.md

File metadata and controls

336 lines (256 loc) · 10.7 KB

ETL when loading

用户在向StarRocks表中导入数据时,有时候目标表中的内容与数据源中的内容不完全一样。比如:

  • 场景一:数据源中包含一些目标表中不需要的内容,可能是存在多余的行,也可能是多余的列
  • 场景二:数据源中的内容并不能够直接导入到StarRocks中,可能需要进行部分转化工作后,才能够导入到StarRocks中。比如,原始文件中的数据是时间戳格式,目标表中的数据类型是Datetime,需要在数据导入时完成类型转化。

StarRocks能够在数据导入时完成数据转化的操作。这样在数据源与目标表中内容不一致的情况下,用户不需要外部的ETL工作,可以直接通过StarRocks提供的能力在导入时就完成数据转化。

通过StarRocks提供的能力,用户可以在数据导入时实现以下目标:

  1. 选择需要导入的列。一方面通过此功能可以跳过不需要导入的列;另一方面当表中列的顺序与文件中字段顺序不一致时,可以通过此功能建立两者的字段映射,从而导入文件。
  2. 过滤不需要的行。在导入时可以通过指定表达式,从而跳过不需要导入的行,只导入必要的行内容。
  3. 导入时生成衍生列(即通过计算处理产生新的列)导入到StarRocks目标表中。
  4. 支持Hive分区路径命名方式,StarRocks能够从文件路径中获取分区列的内容。

选择需要导入的列

样例数据

假如需要向下面的表中导入一份数据:

CREATE TABLE event (
    `event_date` DATE,
    `event_type` TINYINT,
    `user_id` BIGINT
)
DISTRIBUTED BY HASH(user_id) BUCKETS 3;

但是数据文件中却包含了四个字段“user_id, user_gender, event_date, event_type”,样例数据如下所示:

354,female,2020-05-20,1
465,male,2020-05-21,2
576,female,2020-05-22,1
687,male,2020-05-23,2

本地文件导入

通过下面的命令能够将本地数据导入到对应表中:

curl --location-trusted -u root -H "column_separator:," \
    -H "columns: user_id, user_gender, event_date, event_type" -T load-columns.txt \
    http://{FE_HOST}:{FE_HTTP_PORT}/api/test/event/_stream_load

CSV 格式的文件中的列,本来是没有命名的,通过 columns,可以按顺序对其命名(一些 CSV 中,会在首行给出列名,但其实系统是不感知的,会当做普通数据处理)。在这个 case 中,通过 columns 字段,描述了文件中按顺序的字段名字分别是 user_id, user_gender, event_date, event_type。然后,columns 的字段,会和系统中导入表的字段做列名对应,并将数据导入到表中:

  • 与导入表中字段相同的名字,就会直接导入
  • 导入表中不存在的字段,会在导入过程中忽略掉
  • 导入表中存在,但 columns 中未指定的字段,会报错

针对这个例子,字段"user_id, event_date, event_type"都能够在表中找到对应的字段,所以对应的内容都会被导入到 StarRocks 表中。而"user_gender"这个字段在表中并不存在,所以导入时会直接忽略掉这个字段。

HDFS导入

通过下面的命令能够将HDFS的数据导入到对应的表中:

LOAD LABEL test.label_load (
    DATA INFILE("hdfs://{HDFS_HOST}:{HDFS_PORT}/tmp/zc/starrocks/data/date=*/*")
    INTO TABLE `event`
    COLUMNS TERMINATED BY ","
    FORMAT AS "csv"
    (user_id, user_gender, event_date, event_type)
)
WITH BROKER hdfs;

通过"(user_id, user_gender, event_date, event_type)"部分指定文件中的字段名字。StarRocks导入过程中的行为与本地文件导入行为一致。需要的字段会被导入到StarRocks中,不需要的字段会被忽略掉。

Kafka导入

通过下面的命令能够将Kafka中的数据导入到对应表中:

CREATE ROUTINE LOAD test.event_load ON event
    COLUMNS TERMINATED BY ",",
    COLUMNS(user_id, user_gender, event_date, event_type),
WHERE event_type = 1
FROM KAFKA (
    "kafka_broker_list" = "{KAFKA_BROKER_HOST}:{KAFKA_BROKER_PORT}",
    "kafka_topic" = "event"
);

通过"COLUMNS(user_id, user_gender, event_date, event_type)"字段指示Kafka流message所包含的字段名字。StarRocks导入过程中的行为与本地文件一致。需要的字段会被导入到StarRocks中,不需要的字段会被忽略掉。

查询内容

> select * from event;
+------------+------------+---------+
| event_date | event_type | user_id |
+------------+------------+---------+
| 2020-05-22 |          1 |     576 |
| 2020-05-20 |          1 |     354 |
| 2020-05-21 |          2 |     465 |
| 2020-05-23 |          2 |     687 |
+------------+------------+---------+

跳过不需要导入的行

样例数据

假如需要向下面的表中导入一份数据:

CREATE TABLE event (
    `event_date` DATE,
    `event_type` TINYINT,
    `user_id` BIGINT
)
DISTRIBUTED BY HASH(user_id) BUCKETS 3;

假设数据文件中包含三列,样例数据如下所示:

2020-05-20,1,354
2020-05-21,2,465
2020-05-22,1,576
2020-05-23,2,687

现在由于业务需要,目的表中只需要分析 event_type 为 1 的数据。

本地文件导入

在导入本地文件的时候,可以通过下面的命令实现导入event_type=1的数据。具体是通过指定HTTP请求中的Header "where:event_type=1"来过滤数据:

curl --location-trusted -u root -H "column_separator:," \
    -H "where:event_type=1" -T load-rows.txt \
    http://{FE_HOST}:{FE_HTTP_PORT}/test/event/_stream_load

HDFS导入

通过下面的命令,能够实现只将HDFS文件中event_type为1的数据导入到StarRocks中。具体方法是通过"WHERE event_type = 1"选项来过滤要导入的数据:

LOAD LABEL test.label_load (
    DATA INFILE("hdfs://{HDFS_HOST}:{HDFS_PORT}/tmp/zc/starrocks/data/date=*/*")
    INTO TABLE `event`
    COLUMNS TERMINATED BY ","
    FORMAT AS "csv"
    WHERE event_type = 1
)
WITH BROKER hdfs;

Kafka导入

通过下面的命令,能够将Kafka中event_type为1的数据导入到StarRocks的表中。具体方法是通过指定"WHERE event_type = 1"来过滤要导入的数据:

CREATE ROUTINE LOAD test.event_load ON event
COLUMNS TERMINATED BY ",",
WHERE event_type = 1
FROM KAFKA (
    "kafka_broker_list" = "{KAFKA_BROKER_HOST}:{KAFKA_BROKER_PORT}",
    "kafka_topic" = "event"
);

查询内容

> select * from event;
+------------+------------+---------+
| event_date | event_type | user_id |
+------------+------------+---------+
| 2020-05-20 |          1 |     354 |
| 2020-05-22 |          1 |     576 |
+------------+------------+---------+

生成衍生列

假如需要向下面的表中导入一份数据:

CREATE TABLE dim_date (
    `date` DATE,
    `year` INT,
    `month` TINYINT,
    `day` TINYINT
)
DISTRIBUTED BY HASH(date) BUCKETS 1;

但是原始数据文件中只有一个列的内容,具体的数据内容如下:

2020-05-20
2020-05-21
2020-05-22
2020-05-23

在导入时,通过下面的命令实现数据转化。

本地文件导入3

通过下面的命令,能够在导入本地文件的同时,生成对应的衍生列。方法是指定HTTP请求中的Header "columns:date, year=year(date), month=month(date), day=day(date)",让StarRocks在导入过程中根据文件内容计算生成对应的列。

curl --location-trusted -u root -H "column_separator:," \
    -H "columns:date,year=year(date),month=month(date),day=day(date)" -T load-date.txt \
    http://127.0.0.1:8431/api/test/dim_date/_stream_load

这里需要注意:

  • 需要在衍生列之前,先列出 CSV 格式文件中的所有列
  • 然后再列出各种衍生列
  • 不能有 col_name = func(col_name) 的形式,需要时重命名衍生列之前的列名,比如为 col_name = func(col_name0)

HDFS导入

与前述本地文件导入方式类似,通过下面的命令能够实现HDFS文件导入:

LOAD LABEL test.label_load (
    DATA INFILE("hdfs://{HDFS_HOST}:{HDFS_PORT}/tmp/zc/starrocks/data/date=*/*")
    INTO TABLE `event`
    COLUMNS TERMINATED BY ","
    FORMAT AS "csv"
    (date)
    SET(year=year(date), month=month(date), day=day(date))
)
WITH BROKER hdfs;

Kafka导入

类似的,通过下面的命令能够实现从Kafka导入相应数据:

CREATE ROUTINE LOAD test.event_load ON event
    COLUMNS TERMINATED BY ",",
    COLUMNS(date,year=year(date),month=month(date),day=day(date))
FROM KAFKA (
    "kafka_broker_list" = "{KAFKA_BROKER_HOST}:{KAFKA_BROKER_PORT}",
    "kafka_topic" = "event"
);

查询内容

> SELECT * FROM dim_date;
+------------+------+-------+------+
| date       | year | month | day  |
+------------+------+-------+------+
| 2020-05-20 | 2020 |  5    | 20   |
| 2020-05-21 | 2020 |  5    | 21   |
| 2020-05-22 | 2020 |  5    | 22   |
| 2020-05-23 | 2020 |  5    | 23   |
+------------+------+-------+------+

从文件路径中获取字段内容

样例数据

假设我们要向下面的表中导入数据:

CREATE TABLE event (
    `event_date` DATE,
    `event_type` TINYINT,
    `user_id` BIGINT
)
DISTRIBUTED BY HASH(user_id) BUCKETS 3;

要导入的数据是Hive生成的数据,数据按照event_date进行分区,每个文件中只包含"event_type", "user_id"两列。具体的数据内容如下所示:

/tmp/starrocks/data/date=2020-05-20/data
1,354
/tmp/starrocks/data/date=2020-05-21/data
2,465
/tmp/starrocks/data/date=2020-05-22/data
1,576
/tmp/starrocks/data/date=2020-05-23/data
2,687

通过下面的命令可以将数据导入到表"event"中,并且从文件路径中获取"event_date"的信息。

HDFS导入

LOAD LABEL test.label_load (
    DATA INFILE("hdfs://{HDFS_HOST}:{HDFS_PORT}/tmp/starrocks/data/date=*/*")
    INTO TABLE `event`
    COLUMNS TERMINATED BY ","
    FORMAT AS "csv"
    (event_type, user_id)
    COLUMNS FROM PATH AS (date)
    SET(event_date = date)
)
WITH BROKER hdfs;

上述的命令是将匹配路径通配符所有的文件导入到表"event"中。其中文件都为CSV格式,各个列的内容通过“,”进行分割。文件中包含“event_type”,“user_id”两个列。并且能够通过文件路径中获取 “date” 列的信息,因为date列在表中对应的名字是"event_date",所以通过SET语句完成映射。

查询内容

> select * from event;
+------------+------------+---------+
| event_date | event_type | user_id |
+------------+------------+---------+
| 2020-05-22 |          1 |     576 |
| 2020-05-20 |          1 |     354 |
| 2020-05-21 |          2 |     465 |
| 2020-05-23 |          2 |     687 |
+------------+------------+---------+