forked from Public-Health-Bioinformatics/versioned_data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvdb_retrieval.py
855 lines (622 loc) · 34 KB
/
vdb_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
#!/usr/bin/python
"""
****************************** vdb_retrieval.py ******************************
VDBRetrieval() instance called in two stages:
1) by tool's versioned_data.xml form (dynamic_option field)
2) by its executable versioned_data.py script.
"""
import os, sys, glob, time
import string
from random import choice
from bioblend.galaxy import GalaxyInstance
from requests.exceptions import ChunkedEncodingError
from requests.exceptions import ConnectionError
import urllib2
import json
import vdb_common
# Store these values in python/galaxy environment variables?
VDB_DATA_LIBRARY = 'Versioned Data'
VDB_WORKFLOW_CACHE_FOLDER_NAME = 'Workflow cache'
VDB_CACHED_DATA_LABEL = 'Cached data'
# Don't forget to add "[email protected]" to galaxy config admin_users list.
VDB_ADMIN_API_USER = 'versioneddata'
VDB_ADMIN_API_EMAIL = '[email protected]'
VDB_ADMIN_API_KEY_PATH = os.path.join(os.path.dirname(sys._getframe().f_code.co_filename), 'versioneddata_api_key.txt')
#kipper, git, folder and other registered handlers
VDB_STORAGE_OPTIONS = 'kipper git folder biomaj'
# Used in versioned_data_form.py
VDB_DATASET_NOT_AVAILABLE = 'This database is not currently available (no items).'
VDB_DATA_LIBRARY_FOLDER_ERROR = 'Error: this data library folder is not configured correctly.'
VDB_DATA_LIBRARY_CONFIG_ERROR = 'Error: Check folder config file: '
class VDBRetrieval(object):
def __init__(self, api_key=None, api_url=None):
"""
This gets either trans.x.y from <code file="..."> call in versioned_data.xml,
or it gets a call with api_key and api_url from versioned_data.py
@param api_key_path string File path to temporary file containing user's galaxy api_key
@param api_url string contains http://[ip]:[port] for handling galaxy api calls.
"""
# Initialized constants during the life of a request:
self.global_retrieval_date = None
self.library_id = None
self.history_id = None
self.data_stores = []
# Entire json library structure. item.url, type=file|folder, id, name (library path)
# Note: changes to library during a request aren't reflected here.
self.library = None
self.user_api_key = None
self.user_api = None
#self.master_api_key = None
self.admin_api_key = None
self.admin_api = None
self.api_url = None
def set_trans(self, api_url, history_id, user_api_key=None): #master_api_key=None,
"""
Used only on initial presentation of versioned_data.xml form. Doesn't need admin_api
"""
self.history_id = history_id
self.api_url = api_url
self.user_api_key = user_api_key
#self.master_api_key = master_api_key
self.set_user_api()
self.set_admin_api()
self.set_datastores()
def set_api(self, api_info_path):
"""
"api_info_path" is provided only when user submits tool via versioned_data.py call.
It encodes both the api_url and the history_id of current session
Only at this point will we need the admin_api, so it is looked up below.
"""
with open(api_info_path, 'r') as access:
self.user_api_key = access.readline().strip()
#self.master_api_key = access.readline().strip()
api_info = access.readline().strip() #[api_url]-[history_id]
self.api_url, self.history_id = api_info.split('-')
self.set_user_api()
self.set_admin_api()
self.set_datastores()
def set_user_api(self):
"""
Note: error message tacked on to self.data_stores for display back to user.
"""
self.user_api = GalaxyInstance(url=self.api_url, key=self.user_api_key)
if not self.user_api:
self.data_stores.append({'name':'Error: user Galaxy API connection was not set up correctly. Try getting another user API key.', 'id':'none'})
return
def set_datastores(self):
"""
Provides the list of data stores that users can select versions from.
Note: error message tacked on to self.data_stores for display back to user.
"""
# Look for library called "Versioned Data"
try:
libs = self.user_api.libraries.get_libraries(name=VDB_DATA_LIBRARY, deleted=False)
except Exception as err:
# This is the first call to api so api url or authentication erro can happen here.
self.data_stores.append({'name':'Error: Unable to make API connection: ' + err.message, 'id':'none'})
return
found = False
for lib in libs:
if lib['deleted'] == False:
found = True
self.library_id = lib['id']
break;
if not found:
self.data_stores.append({'name':'Error: Data Library [%s] needs to be set up by a galaxy administrator.' % VDB_DATA_LIBRARY, 'id':'none'})
return
try:
if self.admin_api:
self.library = self.admin_api.libraries.show_library(self.library_id, contents=True)
else:
self.library = self.user_api.libraries.show_library(self.library_id, contents=True)
except Exception as err:
# If data within a library is somehow messed up (maybe user has no permissions?), this can generate a bioblend errorapi.
if err.message[-21:] == 'HTTP status code: 403':
self.data_stores.append({'name':'Error: [%s] library needs permissions adjusted so users can view it.' % VDB_DATA_LIBRARY , 'id':'none'})
else:
self.data_stores.append({'name':'Error: Unable to get [%s] library contents: %s' % (VDB_DATA_LIBRARY, err.message) , 'id':'none'})
return
# Need to ensure it is sorted folder/file wise such that folders listed by date/id descending (name leads with version date/id) files will follow).
self.library = sorted(self.library, key=lambda x: x['name'], reverse=False)
# Gets list of data stores
# For given library_id (usually called "Versioned Data"), retrieves folder/name
# for any folder containing a data source specification file. A folder should
# have at most one of these. It indicates the storage method used for the folder.
for item in self.library:
if item['type'] == "file" and self.test_data_store_type(item['name']):
# Returns id of specification file that points to data source.
self.data_stores.append({
'name':os.path.dirname(item['name']),
'id':item['id']
})
def set_admin_api(self):
# Now fetch admin_api_key from disk, or regenerate user account and api from scratch.
if os.path.isfile(VDB_ADMIN_API_KEY_PATH):
with open(VDB_ADMIN_API_KEY_PATH, 'r') as access:
self.admin_api_key = access.readline().strip()
self.api_url = access.readline().strip()
else:
# VERIFY THAT USER IS AN ADMIN
user = self.user_api.users.get_current_user()
if user['is_admin'] == False:
print "Unable to establish the admin api: you need to be in the admin_user=... list in galaxy config."
sys.exit(1)
#if not self.master_api_key:
# print "Unable to establish the admin api: no existing path to config file, and no master_api_key." + self.master_api_key
# sys.exit(1)
# Generate from scratch:
#master_api = GalaxyInstance(url=self.api_url, key=self.master_api_key)
#users = master_api.users.get_users(deleted=False)
users = self.user_api.users.get_users(deleted=False)
for user in users:
if user['email'] == VDB_ADMIN_API_EMAIL:
self.admin_api_key = self.user_api.users.create_user_apikey(user['id'])
if not self.admin_api_key:
#Create admin api access account with dummy email address and reliable but secure password:
# NOTE: this will only be considered an admin account if it is listed in galaxy config file as one.
random_password = ''.join([choice(string.letters + string.digits) for i in range(15)])
api_admin_user = self.user_api.users.create_local_user(VDB_ADMIN_API_USER, VDB_ADMIN_API_EMAIL, random_password)
self.admin_api_key = self.user_api.users.create_user_apikey(api_admin_user['id'])
with open(VDB_ADMIN_API_KEY_PATH, 'w') as access:
access.write(self.admin_api_key + '\n' + self.api_url)
self.admin_api = GalaxyInstance(url=self.api_url, key=self.admin_api_key)
if not self.admin_api:
print 'Error: admin Galaxy API connection was not set up correctly. Admin user should be ' + VDB_ADMIN_API_EMAIL
print "Unexpected error:", sys.exc_info()[0]
sys.exit(1)
def get_data_store_gateway(self, type, spec_file_id):
# NOTE THAT PYTHON NEVER TIMES OUT FOR THESE CALLS - BUT IT WILL TIME OUT FOR API CALLS.
# FUTURE: Adapt this so that any modules in data_stores/ folder are usable
# e.g. https://bbs.archlinux.org/viewtopic.php?id=109561
# http://stackoverflow.com/questions/301134/dynamic-module-import-in-python
# ****************** GIT ARCHIVE ****************
if type == "git":
import data_stores.vdb_git
return data_stores.vdb_git.VDBGitDataStore(self, spec_file_id)
# ****************** Kipper ARCHIVE ****************
elif type == "kipper":
import data_stores.vdb_kipper
return data_stores.vdb_kipper.VDBKipperDataStore(self, spec_file_id)
# ****************** FILE FOLDER ******************
elif type == "folder":
import data_stores.vdb_folder
return data_stores.vdb_folder.VDBFolderDataStore(self, spec_file_id)
# ****************** FILE FOLDER ******************
elif type == "biomaj":
import data_stores.vdb_biomaj
return data_stores.vdb_biomaj.VDBBiomajDataStore(self, spec_file_id)
else:
print 'Error: %s not recognized as a valid data store type.' % type
sys.exit( 1 )
#For a given path leading to pointer.[git|kipper|folder|biomaj] returns suffix
def test_data_store_type(self, file_name, file_path=None):
if file_path and not os.path.isfile(file_path):
return False
suffix = file_name.rsplit('.',1)
if len(suffix) > 1 and suffix[1] in VDB_STORAGE_OPTIONS:
return suffix[1]
return False
def get_library_data_store_list(self):
"""
For display on tool form, returns names, ids of specification files that point to data sources.
@return dirs array of [[folder label], [folder_id, selected]...]
"""
dirs = []
# Gets recursive contents of library - files and folders
for item in self.data_stores:
dirs.append([item['name'], item['id'], False])
return dirs
def get_library_label_path(self, spec_file_id):
for item in self.data_stores:
if item['id'] == spec_file_id:
return item['name']
return None
def get_library_folder_datasets(self, library_version_path, admin=False):
"""
Gets set of ALL dataset FILES within folder - INCLUDING SUBFOLDERS - by searching
through a library, examining each item's full hierarchic label
BUT CURRENTLY: If any file has state='error' the whole list is rejected (and regenerated).
WISHLIST: HAVE AN API FUNCTION TO GET ONLY A GIVEN FOLDER'S (BY ID) CONTENTS!
@param library_version_path string Full hierarchic label of a library file or folder.
@return array of ldda_id library dataset data association ids.
"""
if admin:
api_handle = self.admin_api
else:
api_handle = self.user_api
count = 0
while count < 4:
try:
items = api_handle.libraries.show_library(self.library_id, True)
break
except ChunkedEncodingError:
print "Error: Trying to fetch Versioned Data library listing. Try [" + str(count) + "]"
time.sleep (2)
pass
count +=1
datasets = []
libvpath_len = len(library_version_path) + 1
for item in items:
if item['type'] == "file":
name = item['name']
# need slash or else will match to similar prefixes.
if name[0:libvpath_len] == library_version_path + '/':
# ISSUE seems to be that input library datasets can be queued / running, and this MUST wait till they are finished or it will plow ahead prematurely.
count = 0
while count < 10:
try:
lib_dataset = api_handle.libraries.show_dataset(self.library_id, item['id'])
break
except:
print "Unexpected error:", sys.exc_info()[0]
sys.exit(1)
if lib_dataset['state'] == 'running':
time.sleep(10)
count +=1
continue
elif lib_dataset['state'] == 'queued':
# FUTURE: Check date. If it is really stale it should be killed?
print 'Note: library folder dataset item "%s" is [%s]. Please wait until it is finished processing, or have a galaxy administrator delete the dataset if its creation has failed.' % (name, lib_dataset['state'])
sys.exit(1)
elif lib_dataset['state'] != 'ok' or not os.path.isfile(lib_dataset['file_name']):
print 'Note: library folder dataset "%s" had an error during job. Its state was [%s]. Regenerating.' % (name, lib_dataset['state'])
self.admin_api.libraries.delete_library_dataset(self.library_id, item['id'], purged=True)
return []
else:
break
datasets.append(item['id'])
return datasets
def get_library_version_datasets(self, library_version_path, base_folder_id='', version_label='', version_path=''):
"""
Check if given library has a folder for given version_path. If so:
- and it has content, return its datasets.
- otherwise refetch content for verison folder
If no folder, populate the version folder with data from the archive and return those datasets.
Version exists in external cache (or in case of unlinked folder, in EXISTING galaxy library folder).
Don't call unless version_path contents have been established.
@param library_version_path string Full hierarchic label of a library file or folder with version id.
For creation:
@param base_folder_id string a library folder id under which version files should exist
@param version_label string Label to give newly created galaxy library version folder
@param version_path string Data source folder to retrieve versioned data files from
@return array of dataset
"""
# Pick the first folder of any that match given 'Versioned Data/.../.../[version id]' path.
# This case will always match 'folder' data store:
folder_matches = self.get_folders(name=library_version_path)
if len(folder_matches):
folder_id = folder_matches[0]['id']
dataset_ids = self.get_library_folder_datasets(library_version_path)
if len(dataset_ids) > 0:
return dataset_ids
if os.listdir(version_path) == []:
# version_path doesn't exist for 'folder' data store versions that are datasets directly in library (i.e. not linked)
print "Error: the data store didn't return any content for given version id. Looked in: " + version_path
sys.exit(1)
# NOTE ONE 3rd party COMMENT THAT ONE SHOULD PUT IN file_type='fasta' FOR LARGE FILES. Problem with that is that then galaxy can't recognize other data types.
library_folder_datasets = self.admin_api.libraries.upload_from_galaxy_filesystem(self.library_id, version_path, folder_id, link_data_only=True, roles=None)
else:
if base_folder_id == '': #Normally shouldn't happen
print "Error: no match to given version folder for [" + library_version_path + "] but unable to create one - missing parent folder identifier"
return []
# Provide archive folder with datestamped name and version (folderNew has url, id, name):
folderNew = self.admin_api.libraries.create_folder(self.library_id, version_label, description=VDB_CACHED_DATA_LABEL, base_folder_id=base_folder_id)
folder_id = str(folderNew[0]['id'])
# Now link results to suitably named galaxy library dataset
# Note, this command links to EVERY file/folder in version_folder source.
# Also, Galaxy will strip off .gz suffixes - WITHOUT UNCOMPRESSING FILES!
# So, best to prevent data store from showing .gz files in first place
try:
library_folder_datasets = self.admin_api.libraries.upload_from_galaxy_filesystem(self.library_id, version_path, folder_id, link_data_only=True, roles=None)
except:
# Will return error if version_path folder is empty or kipper unable to create folder or db due to permissions etc.
print "Error: a permission or other error was encountered when trying to retrieve version data for version folder [" + version_path + "]: Is the [%s] listed in galaxy config admin_users list?" % VDB_ADMIN_API_EMAIL, sys.exc_info()[0]
sys.exit(1)
library_dataset_ids = [dataset['id'] for dataset in library_folder_datasets]
# LOOP WAITS UNTIL THESE DATASETS ARE UPLOADED.
# They still take time even for linked big data probably because they are read for metadata.
# Not nice that user doesn't see process as soon as it starts, but timeout possibilities
# later on down the line are more difficult to manage.
for dataset_id in library_dataset_ids:
# ten seconds x 60 = 6 minutes; should be longer?
for count in range(60):
try:
lib_dataset = self.admin_api.libraries.show_dataset(self.library_id, dataset_id)
break
except:
print "Unexpected error:", sys.exc_info()[0]
continue
if lib_dataset['state'] in 'running queued':
time.sleep(10)
count +=1
continue
else:
# Possibly in a nice "ok" or not nice state here.
break
return library_dataset_ids
def get_folders(self, name):
"""
ISSUE: Have run into this sporadic error with a number of bioblend api calls. Means api calls may need to be wrapped in a retry mechanism:
File "/usr/lib/python2.6/site-packages/requests/models.py", line 656, in generate
raise ChunkedEncodingError(e)
requests.exceptions.ChunkedEncodingError: ('Connection broken: IncompleteRead(475 bytes read)', IncompleteRead(475 bytes read))
"""
for count in range(3):
try:
return self.user_api.libraries.get_folders(self.library_id, name=name )
break
except:
print 'Try (%s) to fetch library folders for "%s"' % (str(count), name)
print sys.exc_info()[0]
time.sleep (5)
print "Failed after (%s) tries!" % (str(count))
return None
def get_library_folder(self, library_path, relative_path, relative_labels):
"""
Check if given library has folder that looks like library_path + relative_path.
If not, create and return resulting id. Used for cache creation.
Ignores bad library_path.
@param library_path string Full hierarchic label of a library folder. NOTE: Library_path must have leading forward slash for a match, i.e. /derivative_path
@param relative_path string branch of folder tree stemming from library_path
@param relative_labels string label for each relative_path item
@return folder_id
"""
created = False
root_match = self.get_folders( name=library_path)
if len(root_match):
base_folder_id=root_match[0]['id']
relative_path_array = relative_path.split('/')
relative_labels_array = relative_labels.split('/')
for ptr in range(len (relative_path_array)):
_library_path = os.path.join(library_path, '/'.join(relative_path_array[0:ptr+1]))
folder_matches = self.get_folders( name=_library_path)
if len(folder_matches):
folder_id = folder_matches[0]['id']
else:
dataset_key = relative_path_array[ptr]
label = relative_labels_array[ptr]
folder_new = self.admin_api.libraries.create_folder(self.library_id, dataset_key, description=label, base_folder_id=base_folder_id)
folder_id = str(folder_new[0]['id'])
base_folder_id = folder_id
return folder_id
return None
def get_library_folders(self, library_label_path):
"""
Gets set of ALL folders within given library path. Within each folder, lists its files as well.
Folders are ordered by version date/id, most recent first (natural sort).
NOT Quite recursive. Nested folders don't have parent info.
@param library_version_path string Full hierarchic label of a library folder. Inside it are version subfolders, their datasets, and the pointer file.
@return array of ids of the version subfolders and also their dataset content ids
"""
folders = []
libvpath_len = len(library_label_path)
for item in self.library:
name = item['name']
if name[0:libvpath_len] == library_label_path:
# Skip any file that is immediately under library_label_path
if item['type'] == 'file':
file_key_val = item['name'].rsplit('/',1)
#file_name_parts = file_key_val[1].split('.')
if file_key_val[0] == library_label_path:
#and len(file_name_parts) > 1 \
#and file_name_parts[1] in VDB_STORAGE_OPTIONS:
continue
if item['type'] == 'folder':
folders.append({'id':item['id'], 'name':item['name'], 'files':[]})
else:
# Items should be sorted ascending such that each item is contained in previous folder.
folders[-1]['files'].append({'id':item['id'], 'name':item['name']})
return folders
def get_workflow_data(self, workflow_list, datasets, version_id):
"""
Run each workflow in turn, given datasets generated above.
See if each workflow's output has been cached.
If not, run workflow and reestablish output data
Complexity is that cache could be:
1) in user's history.
2) in library data folder called "derivative_cache" under data source folder (as created by this galaxy install)
3) in external data folder ..."/derivative_cache" (as created by this galaxy install)
BUT other galaxy installs can't really use this unless they know metadata on workflow that generated it
In future we'll design a system for different galaxies to be able to read metadata to determine if they can use the cached workflow data here.
ISSUE Below: Unless it is a really short workflow, run_workflow() returns before work is actually complete. DO WE NEED TO DELAY UNTIL EVERY SINGLE OUTPUT DATASET IS "ok", not just "queued" or "running"? OR IS SERVER TO LIBRARY UPLOAD PAUSE ABOVE ENOUGH?
Note, workflow_list contains only ids for items beginning with "versioning: "
FUTURE IMPROVEMENT: LOCK WORKFLOW: VULNERABILITY: IF WORKFLOW CHANGES, THAT AFFECTS REPRODUCABILITY.
FUTURE: NEED TO ENSURE EACH dataset id not found in history is retrieved from cache.
FUTURE: Check to see that EVERY SINGLE workflow output
has a corresponding dataset_id in history or library,
i.e. len(workflow['outputs']) == len(history_dataset_ids)
But do we know before execution how many outputs (given conditional output?)
@param workflow_list
@param datasets: an array of correct data source versioned datasets that are inputs to tools and workflows
@param version_id
"""
for workflow_id in workflow_list.split():
workflows = self.admin_api.workflows.get_workflows(workflow_id, published=True)
if not len(workflows):
# Error occurs if admin_api user doesn't have permissions on this workflow???
# Currently all workflows have to be shared with VDB_ADMIN_API_EMAIL.
# Future: could get around this by using publicly shared workflows via "import_shared_workflow(workflow_id)"
print 'Error: unable to run workflow - has it been shared with the Versioned Data tool user email address "%s" ?' % VDB_ADMIN_API_EMAIL
sys.exit(1)
for workflow_summary in workflows:
workflow = self.admin_api.workflows.show_workflow(workflow_id)
print 'Doing workflow: "' + workflow_summary['name'] + '"'
if len(workflow['inputs']) == 0:
print "ERROR: This workflow is not configured correctly - it needs at least 1 input dataset step."
# FUTURE: Bring greater intelligence to assigning inputs to workflow?!!!
if len(datasets) < len(workflow['inputs']):
print 'Error: workflow requires more inputs (%s) than are available in retrieved datasets (%s) for this version of retrieved data.' % (len(workflow['inputs']), len(datasets))
sys.exit(1)
codings = self.get_codings(workflow, datasets)
(workflow_input_key, workflow_input_label, annotation_key, dataset_map) = codings
history_dataset_ids = self.get_history_workflow_results(annotation_key)
if not history_dataset_ids:
library_cache_path = os.path.join("/", VDB_WORKFLOW_CACHE_FOLDER_NAME, workflow_id, workflow_input_key)
# This has to be privileged api admin fetch.
library_dataset_ids = self.get_library_folder_datasets(library_cache_path, admin=True)
if not len(library_dataset_ids):
# No cache in library so run workflow
# Create admin_api history
admin_history = self.admin_api.histories.create_history()
admin_history_id = admin_history['id']
# If you try to run a workflow that hasn't been shared with you, it seems to go a bit brezerk.
work_result = self.admin_api.workflows.run_workflow(workflow_id, dataset_map=dataset_map, history_id=admin_history_id)
# Then copy (link) results back to library so can match in future
self.cache_datasets(library_cache_path, work_result, workflow_summary, codings, version_id, admin_history_id)
# Now return the new cached library dataset ids:
library_dataset_ids = self.get_library_folder_datasets(library_cache_path, admin=True)
""" If a dataset is purged, its purged everywhere... so don't purge! Let caching system do that.
THIS APPEARS TO HAPPEN TOO QUICKLY FOR LARGE DATABASES; LEAVE IT TO CACHING MECHANISM TO CLEAR. OR ABOVE FIX TO WAIT UNTIL DS IS OK.
self.admin_api.histories.delete_history(admin_history_id, purge=False)
"""
# Now link library cache workflow results to history and add key there for future match.
self.update_history(library_dataset_ids, annotation_key, version_id)
def update_history(self, library_dataset_ids, annotation, version_id):
"""
Copy datasets from library over to current history if they aren't already there.
Must cycle through history datasets, looking for "copied_from_ldda_id" value. This is available only with details view.
@param library_dataset_ids array List of dataset Ids to copy from library folder
@param annotation string annotation to add (e.g. Path of original version folder added as annotation)
@param version_id string Label to add to copied dataset in user's history
"""
history_datasets = self.user_api.histories.show_history(self.history_id, contents=True, deleted=False, visible=True, details='all' , types=None) # ,
datasets = []
for dataset_id in library_dataset_ids:
# USING ADMIN_API because that's only way to get workflow items back... user_api doesn't nec. have view rights on newly created workflow items. Only [email protected] has perms.
ld_dataset = self.admin_api.libraries.show_dataset(self.library_id, dataset_id)
if not ld_dataset['state'] in 'ok running queued':
print "Error when linking to library dataset cache [" + ld_dataset['name'] + ", " + ld_dataset['id'] + "] - it isn't in a good state: " + ld_dataset['state']
sys.exit(1)
if not os.path.isfile(ld_dataset['file_name']):
pass
#FUTURE: SHOULD TRIGGER LIBRARY REGENERATION OF ITEM?
library_ldda_id = ld_dataset['ldda_id']
# Find out if library dataset item is already in history, and if so, just return that item.
dataset = None
for dataset2 in history_datasets:
if 'copied_from_ldda_id' in dataset2 \
and dataset2['copied_from_ldda_id'] == library_ldda_id \
and dataset2['state'] in 'ok running' \
and dataset2['accessible'] == True:
dataset = dataset2
break
if not dataset: # link in given dataset from library
dataset = self.user_api.histories.upload_dataset_from_library(self.history_id, dataset_id)
# Update dataset's label - not necessary, just hinting at its creation.
new_name = dataset['name']
if dataset['name'][-len(version_id):] != version_id:
new_name += ' ' + version_id
self.user_api.histories.update_dataset(self.history_id, dataset['id'], name=new_name, annotation = annotation)
datasets.append({
'id': dataset['id'],
'ld_id': ld_dataset['id'],
'name': dataset['name'],
'ldda_id': library_ldda_id,
'library_dataset_name': ld_dataset['name'],
'state': ld_dataset['state']
})
return datasets
def get_codings(self, workflow, datasets):
"""
Returns a number of coded lists or arrays for use in caching or displaying workflow results.
Note: workflow['inputs'] = {u'23': {u'label': u'Input Dataset', u'value': u''}},
Note: step_id is not incremental.
Note: VERY COMPLICATED because of hda/ldda/ld ids
FUTURE: IS METADATA AVAILABLE TO BETTER MATCH WORKFLOW INPUTS TO DATA SOURCE RECALL VERSIONS?
ISSUE: IT IS ASSUMED ALL INPUTS TO WORKFLOW ARE AVAILABLE AS DATASETS BY ID IN LIBRARY. I.e.
one can't have a workflow that also makes reference to another just-generated file in user's
history.
"""
db_ptr = 0
dataset_map = {}
workflow_input_key = []
workflow_input_labels = []
for step_id, ds_in in workflow['inputs'].iteritems():
input_dataset_id = datasets[db_ptr]['ld_id']
ldda_id = datasets[db_ptr]['ldda_id']
dataset_map[step_id] = {'src': 'ld', 'id': input_dataset_id}
workflow_input_key.append(ldda_id) #like dataset_index but from workflow input perspective
workflow_input_labels.append(datasets[db_ptr]['name'])
db_ptr += 1
workflow_input_key = '_'.join(workflow_input_key)
workflow_input_labels = ', '.join(workflow_input_labels)
annotation_key = workflow['id'] + ":" + workflow_input_key
return (workflow_input_key, workflow_input_labels, annotation_key, dataset_map)
def get_history_workflow_results(self, annotation):
"""
See if workflow-generated dataset exists in user's history. The only way to spot this
is to find some dataset in user's history that has workflow_id in its "annotation" field.
We added the specific dataset id's that were used as input to the workflow as well as the
workflow key since same workflow could have been run on different inputs.
@param annotation_key string Contains workflow id and input dataset ids..
"""
history_datasets = self.user_api.histories.show_history(self.history_id, contents=True, deleted=False, visible=True, details='all') # , types=None
dataset_ids = []
for dataset in history_datasets:
if dataset['annotation'] == annotation:
if dataset['accessible'] == True and dataset['state'] == 'ok':
dataset_ids.append(dataset['id'])
else:
print "Warning: dataset " + dataset['name'] + " is in an error state [ " + dataset['state'] + "] so skipped!"
return dataset_ids
def cache_datasets(self, library_cache_path, work_result, workflow_summary, codings, version_id, history_id):
"""
Use the Galaxy API to LINK versioned data api admin user's history workflow-created item(s) into the appropriate Versioned Data Workflow Cache folder. Doing this via API call so that metadata is preserved, e.g. preserving that it is a product of makeblastdb/formatdb and all that entails. Only then does Galaxy remain knowledgeable about datatype/data collection.
Then user gets link to workflow dataset in their history. (If a galaxy user deletes a workflow dataset in their history they actually only deletes their history link to that dataset. True of api admin user?)
FUTURE: have the galaxy-created data shared from a server location?
"""
(workflow_input_key, workflow_input_label, annotation_key, dataset_map) = codings
# This will create folder if it doesn't exist:
_library_cache_labels = os.path.join("/", VDB_WORKFLOW_CACHE_FOLDER_NAME, workflow_summary['name'], 'On ' + workflow_input_label)
folder_id = self.get_library_folder("/", library_cache_path, _library_cache_labels)
if not folder_id: # Case should never happen
print 'Error: unable to determine library folder to place cache in:' + library_cache_path
sys.exit(1)
for dataset_id in work_result['outputs']:
# We have to mark each dataset entry with the Workflow ID and input datasets it was generated by.
# No other way to know they are associated. ADD VERSION ID TO END OF workflowinput_label?
label = workflow_summary['name'] +' on ' + workflow_input_label
# THIS WILL BE IN ADMIN API HISTORY
self.admin_api.histories.update_dataset(history_id, dataset_id, annotation = annotation_key, name=label)
# Upload dataset_id and give it description 'cached data'
if 'copy_from_dataset' in dir(self.admin_api.libraries):
# IN BIOBLEND LATEST:
self.admin_api.libraries.copy_from_dataset(self.library_id, dataset_id, folder_id, VDB_CACHED_DATA_LABEL + ": version " + version_id)
else:
self.library_cache_setup_privileged(folder_id, dataset_id, VDB_CACHED_DATA_LABEL + ": version " + version_id)
def library_cache_setup_privileged(self, folder_id, dataset_id, message):
"""
Copy a history HDA into a library LDDA (that the current admin api user has add permissions on)
in the given library and library folder. Requires that dataset_id has been created by admin_api_key user. Nicola Soranzo [[email protected] will be adding to BIOBLEND eventually.
We tried linking a Versioned Data library Workflow Cache folder to the dataset(s) a non-admin api user has just generated. It turns out API user that connects the two must be both a Library admin AND the owner of the history dataset being uploaded, or an error occurs. So system can't do action on behalf of non-library-privileged user. Second complication with that approach is that there is no Bioblend API call - one must do this directly in galaxy API via direct URL fetc.
NOTE: This will raise "HTTPError(req.get_full_url(), code, msg, hdrs, fp)" if given empty folder_id for example
@see def copy_hda_to_ldda( library_id, library_folder_id, hda_id, message='' ):
@see https://wiki.galaxyproject.org/Events/GCC2013/TrainingDay/API?action=AttachFile&do=view&target=lddas_1.py
@uses library_id: the id of the library which we want to query.
@param dataset_id: the id of the user's history dataset we want to copy into the library folder.
@param folder_id: the id of the library folder to copy into.
@param message: an optional message to add to the new LDDA.
"""
full_url = self.api_url + '/libraries' + '/' + self.library_id + '/contents'
url = self.make_url( self.admin_api_key, full_url )
post_data = {
'folder_id' : folder_id,
'create_type' : 'file',
'from_hda_id' : dataset_id,
'ldda_message' : message
}
req = urllib2.Request( url, headers = { 'Content-Type': 'application/json' }, data = json.dumps( post_data ) )
#try:
results = json.loads( urllib2.urlopen( req ).read() )
return
#Expecting to phase this out with bioblend api call for library_cache_setup()
def make_url(self, api_key, url, args=None ):
# Adds the API Key to the URL if it's not already there.
if args is None:
args = []
argsep = '&'
if '?' not in url:
argsep = '?'
if '?key=' not in url and '&key=' not in url:
args.insert( 0, ( 'key', api_key ) )
return url + argsep + '&'.join( [ '='.join( t ) for t in args ] )