-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathtranE.py
231 lines (208 loc) · 10.4 KB
/
tranE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from random import uniform, sample
from numpy import *
from copy import deepcopy
class TransE:
def __init__(self, entityList, relationList, tripleList, margin = 1, learingRate = 0.00001, dim = 10, L1 = True):
self.margin = margin
self.learingRate = learingRate
self.dim = dim#向量维度
self.entityList = entityList#一开始,entityList是entity的list;初始化后,变为字典,key是entity,values是其向量(使用narray)。
self.relationList = relationList#理由同上
self.tripleList = tripleList#理由同上
self.loss = 0
self.L1 = L1
def initialize(self):
'''
初始化向量
'''
entityVectorList = {}
relationVectorList = {}
for entity in self.entityList:
n = 0
entityVector = []
while n < self.dim:
ram = init(self.dim)#初始化的范围
entityVector.append(ram)
n += 1
entityVector = norm(entityVector)#归一化
entityVectorList[entity] = entityVector
print("entityVector初始化完成,数量是%d"%len(entityVectorList))
for relation in self. relationList:
n = 0
relationVector = []
while n < self.dim:
ram = init(self.dim)#初始化的范围
relationVector.append(ram)
n += 1
relationVector = norm(relationVector)#归一化
relationVectorList[relation] = relationVector
print("relationVectorList初始化完成,数量是%d"%len(relationVectorList))
self.entityList = entityVectorList
self.relationList = relationVectorList
def transE(self, cI = 20):
print("训练开始")
for cycleIndex in range(cI):
Sbatch = self.getSample(150)
Tbatch = []#元组对(原三元组,打碎的三元组)的列表 :{((h,r,t),(h',r,t'))}
for sbatch in Sbatch:
tripletWithCorruptedTriplet = (sbatch, self.getCorruptedTriplet(sbatch))
if(tripletWithCorruptedTriplet not in Tbatch):
Tbatch.append(tripletWithCorruptedTriplet)
self.update(Tbatch)
if cycleIndex % 100 == 0:
print("第%d次循环"%cycleIndex)
print(self.loss)
self.writeRelationVector("c:\\relationVector.txt")
self.writeEntilyVector("c:\\entityVector.txt")
self.loss = 0
def getSample(self, size):
return sample(self.tripleList, size)
def getCorruptedTriplet(self, triplet):
'''
training triplets with either the head or tail replaced by a random entity (but not both at the same time)
:param triplet:
:return corruptedTriplet:
'''
i = uniform(-1, 1)
if i < 0:#小于0,打坏三元组的第一项
while True:
entityTemp = sample(self.entityList.keys(), 1)[0]
if entityTemp != triplet[0]:
break
corruptedTriplet = (entityTemp, triplet[1], triplet[2])
else:#大于等于0,打坏三元组的第二项
while True:
entityTemp = sample(self.entityList.keys(), 1)[0]
if entityTemp != triplet[1]:
break
corruptedTriplet = (triplet[0], entityTemp, triplet[2])
return corruptedTriplet
def update(self, Tbatch):
copyEntityList = deepcopy(self.entityList)
copyRelationList = deepcopy(self.relationList)
for tripletWithCorruptedTriplet in Tbatch:
headEntityVector = copyEntityList[tripletWithCorruptedTriplet[0][0]]#tripletWithCorruptedTriplet是原三元组和打碎的三元组的元组tuple
tailEntityVector = copyEntityList[tripletWithCorruptedTriplet[0][1]]
relationVector = copyRelationList[tripletWithCorruptedTriplet[0][2]]
headEntityVectorWithCorruptedTriplet = copyEntityList[tripletWithCorruptedTriplet[1][0]]
tailEntityVectorWithCorruptedTriplet = copyEntityList[tripletWithCorruptedTriplet[1][1]]
headEntityVectorBeforeBatch = self.entityList[tripletWithCorruptedTriplet[0][0]]#tripletWithCorruptedTriplet是原三元组和打碎的三元组的元组tuple
tailEntityVectorBeforeBatch = self.entityList[tripletWithCorruptedTriplet[0][1]]
relationVectorBeforeBatch = self.relationList[tripletWithCorruptedTriplet[0][2]]
headEntityVectorWithCorruptedTripletBeforeBatch = self.entityList[tripletWithCorruptedTriplet[1][0]]
tailEntityVectorWithCorruptedTripletBeforeBatch = self.entityList[tripletWithCorruptedTriplet[1][1]]
if self.L1:
distTriplet = distanceL1(headEntityVectorBeforeBatch, tailEntityVectorBeforeBatch, relationVectorBeforeBatch)
distCorruptedTriplet = distanceL1(headEntityVectorWithCorruptedTripletBeforeBatch, tailEntityVectorWithCorruptedTripletBeforeBatch , relationVectorBeforeBatch)
else:
distTriplet = distanceL2(headEntityVectorBeforeBatch, tailEntityVectorBeforeBatch, relationVectorBeforeBatch)
distCorruptedTriplet = distanceL2(headEntityVectorWithCorruptedTripletBeforeBatch, tailEntityVectorWithCorruptedTripletBeforeBatch , relationVectorBeforeBatch)
eg = self.margin + distTriplet - distCorruptedTriplet
if eg > 0: #[function]+ 是一个取正值的函数
self.loss += eg
if self.L1:
tempPositive = 2 * self.learingRate * (tailEntityVectorBeforeBatch - headEntityVectorBeforeBatch - relationVectorBeforeBatch)
tempNegtative = 2 * self.learingRate * (tailEntityVectorWithCorruptedTripletBeforeBatch - headEntityVectorWithCorruptedTripletBeforeBatch - relationVectorBeforeBatch)
tempPositiveL1 = []
tempNegtativeL1 = []
for i in range(self.dim):#不知道有没有pythonic的写法(比如列表推倒或者numpy的函数)?
if tempPositive[i] >= 0:
tempPositiveL1.append(1)
else:
tempPositiveL1.append(-1)
if tempNegtative[i] >= 0:
tempNegtativeL1.append(1)
else:
tempNegtativeL1.append(-1)
tempPositive = array(tempPositiveL1)
tempNegtative = array(tempNegtativeL1)
else:
tempPositive = 2 * self.learingRate * (tailEntityVectorBeforeBatch - headEntityVectorBeforeBatch - relationVectorBeforeBatch)
tempNegtative = 2 * self.learingRate * (tailEntityVectorWithCorruptedTripletBeforeBatch - headEntityVectorWithCorruptedTripletBeforeBatch - relationVectorBeforeBatch)
headEntityVector = headEntityVector + tempPositive
tailEntityVector = tailEntityVector - tempPositive
relationVector = relationVector + tempPositive - tempNegtative
headEntityVectorWithCorruptedTriplet = headEntityVectorWithCorruptedTriplet - tempNegtative
tailEntityVectorWithCorruptedTriplet = tailEntityVectorWithCorruptedTriplet + tempNegtative
#只归一化这几个刚更新的向量,而不是按原论文那些一口气全更新了
copyEntityList[tripletWithCorruptedTriplet[0][0]] = norm(headEntityVector)
copyEntityList[tripletWithCorruptedTriplet[0][1]] = norm(tailEntityVector)
copyRelationList[tripletWithCorruptedTriplet[0][2]] = norm(relationVector)
copyEntityList[tripletWithCorruptedTriplet[1][0]] = norm(headEntityVectorWithCorruptedTriplet)
copyEntityList[tripletWithCorruptedTriplet[1][1]] = norm(tailEntityVectorWithCorruptedTriplet)
self.entityList = copyEntityList
self.relationList = copyRelationList
def writeEntilyVector(self, dir):
print("写入实体")
entityVectorFile = open(dir, 'w')
for entity in self.entityList.keys():
entityVectorFile.write(entity+"\t")
entityVectorFile.write(str(self.entityList[entity].tolist()))
entityVectorFile.write("\n")
entityVectorFile.close()
def writeRelationVector(self, dir):
print("写入关系")
relationVectorFile = open(dir, 'w')
for relation in self.relationList.keys():
relationVectorFile.write(relation + "\t")
relationVectorFile.write(str(self.relationList[relation].tolist()))
relationVectorFile.write("\n")
relationVectorFile.close()
def init(dim):
return uniform(-6/(dim**0.5), 6/(dim**0.5))
def distanceL1(h, t ,r):
s = h + r - t
sum = fabs(s).sum()
return sum
def distanceL2(h, t, r):
s = h + r - t
sum = (s*s).sum()
return sum
def norm(list):
'''
归一化
:param 向量
:return: 向量的平方和的开方后的向量
'''
var = linalg.norm(list)
i = 0
while i < len(list):
list[i] = list[i]/var
i += 1
return array(list)
def openDetailsAndId(dir,sp="\t"):
idNum = 0
list = []
with open(dir) as file:
lines = file.readlines()
for line in lines:
DetailsAndId = line.strip().split(sp)
list.append(DetailsAndId[0])
idNum += 1
return idNum, list
def openTrain(dir,sp="\t"):
num = 0
list = []
with open(dir) as file:
lines = file.readlines()
for line in lines:
triple = line.strip().split(sp)
if(len(triple)<3):
continue
list.append(tuple(triple))
num += 1
return num, list
if __name__ == '__main__':
dirEntity = "C:\\data\\entity2id.txt"
entityIdNum, entityList = openDetailsAndId(dirEntity)
dirRelation = "C:\\data\\relation2id.txt"
relationIdNum, relationList = openDetailsAndId(dirRelation)
dirTrain = "C:\\data\\train.txt"
tripleNum, tripleList = openTrain(dirTrain)
print("打开TransE")
transE = TransE(entityList,relationList,tripleList, margin=1, dim = 100)
print("TranE初始化")
transE.initialize()
transE.transE(15000)
transE.writeRelationVector("c:\\relationVector.txt")
transE.writeEntilyVector("c:\\entityVector.txt")