forked from awasthiabhijeet/PIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_edit_vocab.py
100 lines (81 loc) · 3.99 KB
/
get_edit_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import argparse
import seq2edits_utils
from collections import defaultdict
import tokenization
import argparse
from utils import generator_based_read_file, do_pickle, pretty, custom_tokenize
from collections import Counter, defaultdict
from joblib import Parallel, delayed
from tqdm import tqdm
def add_arguments(parser):
"""Build ArgumentParser."""
parser.add_argument("--vocab_path", type=str, default=None, help="path to bert's cased vocab file")
parser.add_argument("--incorr_sents", type=str, default=None, help="path to incorrect sentence file")
parser.add_argument("--correct_sents", type=str, default=None, help="path to correct sentence file")
parser.add_argument("--common_inserts_dir", type=str, default="pickles", help="path to store common inserts in pickles")
parser.add_argument("--size_insert_list", type=int, default=500, help="size of common insertions list")
parser.add_argument("--size_delete_list", type=int, default=500, help="size of common deletions list")
# all the datasets can be obtained from here: https://www.cl.cam.ac.uk/research/nl/bea2019st/
parser = argparse.ArgumentParser()
add_arguments(parser)
FLAGS, unparsed = parser.parse_known_args()
wordpiece_tokenizer = tokenization.FullTokenizer(FLAGS.vocab_path, do_lower_case=False)
def merge_dicts(dicts):
merged = defaultdict(int)
for d in dicts:
for elem in d:
merged[elem] += d[elem]
return merged
def update_dicts(insert_dict, delete_dict, rejected, processed):
insert_dict = merge_dicts([p[0] for p in processed]+[insert_dict])
delete_dict = merge_dicts([p[1] for p in processed]+[delete_dict])
rejected += sum(p[2] for p in processed)
return insert_dict, delete_dict, rejected
def get_ins_dels(incorr_line, correct_line):
ins = defaultdict(int)
dels = defaultdict(int)
rejected = 0
incorr_tokens = custom_tokenize(incorr_line, wordpiece_tokenizer, mode="train")
correct_tokens = custom_tokenize(correct_line, wordpiece_tokenizer, mode="train")
diffs = seq2edits_utils.ndiff(incorr_tokens, correct_tokens)
for item in diffs:
if item[0]=="+":
if len(item[2:].split())>2:
return defaultdict(int), defaultdict(int), 1
ins[item[2:]]+=1
elif item[0]=="-":
dels[item[2:]]+=1
return ins,dels,0
def segregate_insertions(insert_dict):
#segregates unigram and bigram insetions
#returns unigram and bigram list
unigrams = []
bigrams = []
for item in insert_dict:
if len(item.split())==2:
bigrams.append(item)
elif len(item.split())==1:
unigrams.append(item)
else:
print("ERROR: we only support upto bigram insertions")
return unigrams,bigrams
# Read raw data
pretty.pheader('Reading Input')
incorrect_lines_generator = generator_based_read_file(FLAGS.incorr_sents, 'incorrect lines')
correct_lines_generator = generator_based_read_file(FLAGS.correct_sents, 'correct lines')
insert_dict={}
delete_dict={}
rejected = 0 #number of sentences having more q-gram insertion where q>2
for incorrect_lines, correct_lines in zip(incorrect_lines_generator, correct_lines_generator):
processed_dicts = Parallel(n_jobs=-1)(delayed(get_ins_dels)(*s) for s in tqdm(
zip(incorrect_lines, correct_lines), total=len(incorrect_lines)))
insert_dict,delete_dict, rejected=update_dicts(insert_dict, delete_dict, rejected, processed_dicts)
insert_dict=dict(Counter(insert_dict).most_common(FLAGS.size_insert_list))
delete_dict=dict(Counter(delete_dict).most_common(FLAGS.size_delete_list))
#insert_dict corresponds to \Sigma_a in the paper.
#Elements in \Sigma_a are considered for appends and replacements both
unigram_inserts, bigram_inserts = segregate_insertions(insert_dict)
do_pickle(unigram_inserts,os.path.join(FLAGS.common_inserts_dir,"common_inserts.p"))
do_pickle(bigram_inserts,os.path.join(FLAGS.common_inserts_dir,"common_multitoken_inserts.p"))
do_pickle(delete_dict,os.path.join(FLAGS.common_inserts_dir,"common_deletes.p"))