###### basset_train.lua
Train a convolutional neural network on the given data.
Argument | Type | Description |
---|---|---|
data_file | HDF5 | Input training and validation data |
Option | Description |
---|---|
-cuda | Run on GPGPU |
-job | Table of job hyper-parameters |
-max_epochs | Maximum training epochs to perform |
-restart | Restart an interrupted training run using the given model file |
-result | Write the loss value to this file (useful for Bayes Opt) |
-save | Prefix for saved models [Default: dnacnn] |
-seed | Seed the model with the parameters of another in the given model file |
-rand | Random number generator seed |
-stagnant_t | Allowed epochs with stagnant validation loss [Default: 10] |
###### basset_test.lua
Report model performance on the given test data, producing files with AUC and points along the ROC curves for each sample.
Argument | Type | Description |
---|---|---|
model_file | Model | Saved model to use |
data_file | HDF5 | Input training and validation data |
out_dir | Output directory |
Option | Description |
---|---|
-cuda | Run on GPGPU |
###### basset_predict.lua
Predict activity for a new set of sequences.
Arguments | Type | Description |
---|---|---|
model_file | Model | Saved model to use |
data_file | HDF5 | Input training and validation data |
out_file | Output file |
Option | Description |
---|---|
-cuda | Run on GPU [Default: False] |
-norm | Normalize all targets to a 0.05 frequency |