-
Notifications
You must be signed in to change notification settings - Fork 1
/
deepThinkingML.html
7403 lines (7387 loc) · 359 KB
/
deepThinkingML.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<!--[if IE]><meta http-equiv="X-UA-Compatible" content="IE=edge"><![endif]-->
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="generator" content="Asciidoctor 1.5.7.1">
<meta name="description" content="机器学习深度思考学习笔记。从最简单的机器学习基本概念,逐层剖析,挖掘机器学习最本质的问题,展示机器学习背后的数学之美">
<meta name="keywords" content="机器学习,统计学习,逻辑回归,决策树,支持向量机,条件随机场,聚类">
<meta name="author" content="xjtu-zhongyingLi">
<title>深度思考之机器学习系列</title>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Open+Sans:300,300italic,400,400italic,600,600italic%7CNoto+Serif:400,400italic,700,700italic%7CDroid+Sans+Mono:400,700">
<style>
/* Asciidoctor default stylesheet | MIT License | http://asciidoctor.org */
/* Uncomment @import statement below to use as custom stylesheet */
/*@import "https://fonts.googleapis.com/css?family=Open+Sans:300,300italic,400,400italic,600,600italic%7CNoto+Serif:400,400italic,700,700italic%7CDroid+Sans+Mono:400,700";*/
article,aside,details,figcaption,figure,footer,header,hgroup,main,nav,section,summary{display:block}
audio,canvas,video{display:inline-block}
audio:not([controls]){display:none;height:0}
script{display:none!important}
html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}
a{background:transparent}
a:focus{outline:thin dotted}
a:active,a:hover{outline:0}
h1{font-size:2em;margin:.67em 0}
abbr[title]{border-bottom:1px dotted}
b,strong{font-weight:bold}
dfn{font-style:italic}
hr{-moz-box-sizing:content-box;box-sizing:content-box;height:0}
mark{background:#ff0;color:#000}
code,kbd,pre,samp{font-family:monospace;font-size:1em}
pre{white-space:pre-wrap}
q{quotes:"\201C" "\201D" "\2018" "\2019"}
small{font-size:80%}
sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}
sup{top:-.5em}
sub{bottom:-.25em}
img{border:0}
svg:not(:root){overflow:hidden}
figure{margin:0}
fieldset{border:1px solid silver;margin:0 2px;padding:.35em .625em .75em}
legend{border:0;padding:0}
button,input,select,textarea{font-family:inherit;font-size:100%;margin:0}
button,input{line-height:normal}
button,select{text-transform:none}
button,html input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer}
button[disabled],html input[disabled]{cursor:default}
input[type="checkbox"],input[type="radio"]{box-sizing:border-box;padding:0}
button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}
textarea{overflow:auto;vertical-align:top}
table{border-collapse:collapse;border-spacing:0}
*,*::before,*::after{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}
html,body{font-size:100%}
body{background:#fff;color:rgba(0,0,0,.8);padding:0;margin:0;font-family:"Noto Serif","DejaVu Serif",serif;font-weight:400;font-style:normal;line-height:1;position:relative;cursor:auto;tab-size:4;-moz-osx-font-smoothing:grayscale;-webkit-font-smoothing:antialiased}
a:hover{cursor:pointer}
img,object,embed{max-width:100%;height:auto}
object,embed{height:100%}
img{-ms-interpolation-mode:bicubic}
.left{float:left!important}
.right{float:right!important}
.text-left{text-align:left!important}
.text-right{text-align:right!important}
.text-center{text-align:center!important}
.text-justify{text-align:justify!important}
.hide{display:none}
img,object,svg{display:inline-block;vertical-align:middle}
textarea{height:auto;min-height:50px}
select{width:100%}
.center{margin-left:auto;margin-right:auto}
.stretch{width:100%}
.subheader,.admonitionblock td.content>.title,.audioblock>.title,.exampleblock>.title,.imageblock>.title,.listingblock>.title,.literalblock>.title,.stemblock>.title,.openblock>.title,.paragraph>.title,.quoteblock>.title,table.tableblock>.title,.verseblock>.title,.videoblock>.title,.dlist>.title,.olist>.title,.ulist>.title,.qlist>.title,.hdlist>.title{line-height:1.45;color:#7a2518;font-weight:400;margin-top:0;margin-bottom:.25em}
div,dl,dt,dd,ul,ol,li,h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6,pre,form,p,blockquote,th,td{margin:0;padding:0;direction:ltr}
a{color:#2156a5;text-decoration:underline;line-height:inherit}
a:hover,a:focus{color:#1d4b8f}
a img{border:none}
p{font-family:inherit;font-weight:400;font-size:1em;line-height:1.6;margin-bottom:1.25em;text-rendering:optimizeLegibility}
p aside{font-size:.875em;line-height:1.35;font-style:italic}
h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6{font-family:"Open Sans","DejaVu Sans",sans-serif;font-weight:300;font-style:normal;color:#ba3925;text-rendering:optimizeLegibility;margin-top:1em;margin-bottom:.5em;line-height:1.0125em}
h1 small,h2 small,h3 small,#toctitle small,.sidebarblock>.content>.title small,h4 small,h5 small,h6 small{font-size:60%;color:#e99b8f;line-height:0}
h1{font-size:2.125em}
h2{font-size:1.6875em}
h3,#toctitle,.sidebarblock>.content>.title{font-size:1.375em}
h4,h5{font-size:1.125em}
h6{font-size:1em}
hr{border:solid #ddddd8;border-width:1px 0 0;clear:both;margin:1.25em 0 1.1875em;height:0}
em,i{font-style:italic;line-height:inherit}
strong,b{font-weight:bold;line-height:inherit}
small{font-size:60%;line-height:inherit}
code{font-family:"Droid Sans Mono","DejaVu Sans Mono",monospace;font-weight:400;color:rgba(0,0,0,.9)}
ul,ol,dl{font-size:1em;line-height:1.6;margin-bottom:1.25em;list-style-position:outside;font-family:inherit}
ul,ol{margin-left:1.5em}
ul li ul,ul li ol{margin-left:1.25em;margin-bottom:0;font-size:1em}
ul.square li ul,ul.circle li ul,ul.disc li ul{list-style:inherit}
ul.square{list-style-type:square}
ul.circle{list-style-type:circle}
ul.disc{list-style-type:disc}
ol li ul,ol li ol{margin-left:1.25em;margin-bottom:0}
dl dt{margin-bottom:.3125em;font-weight:bold}
dl dd{margin-bottom:1.25em}
abbr,acronym{text-transform:uppercase;font-size:90%;color:rgba(0,0,0,.8);border-bottom:1px dotted #ddd;cursor:help}
abbr{text-transform:none}
blockquote{margin:0 0 1.25em;padding:.5625em 1.25em 0 1.1875em;border-left:1px solid #ddd}
blockquote cite{display:block;font-size:.9375em;color:rgba(0,0,0,.6)}
blockquote cite::before{content:"\2014 \0020"}
blockquote cite a,blockquote cite a:visited{color:rgba(0,0,0,.6)}
blockquote,blockquote p{line-height:1.6;color:rgba(0,0,0,.85)}
@media screen and (min-width:768px){h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6{line-height:1.2}
h1{font-size:2.75em}
h2{font-size:2.3125em}
h3,#toctitle,.sidebarblock>.content>.title{font-size:1.6875em}
h4{font-size:1.4375em}}
table{background:#fff;margin-bottom:1.25em;border:solid 1px #dedede}
table thead,table tfoot{background:#f7f8f7}
table thead tr th,table thead tr td,table tfoot tr th,table tfoot tr td{padding:.5em .625em .625em;font-size:inherit;color:rgba(0,0,0,.8);text-align:left}
table tr th,table tr td{padding:.5625em .625em;font-size:inherit;color:rgba(0,0,0,.8)}
table tr.even,table tr.alt,table tr:nth-of-type(even){background:#f8f8f7}
table thead tr th,table tfoot tr th,table tbody tr td,table tr td,table tfoot tr td{display:table-cell;line-height:1.6}
h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6{line-height:1.2;word-spacing:-.05em}
h1 strong,h2 strong,h3 strong,#toctitle strong,.sidebarblock>.content>.title strong,h4 strong,h5 strong,h6 strong{font-weight:400}
.clearfix::before,.clearfix::after,.float-group::before,.float-group::after{content:" ";display:table}
.clearfix::after,.float-group::after{clear:both}
*:not(pre)>code{font-size:.9375em;font-style:normal!important;letter-spacing:0;padding:.1em .5ex;word-spacing:-.15em;background-color:#f7f7f8;-webkit-border-radius:4px;border-radius:4px;line-height:1.45;text-rendering:optimizeSpeed;word-wrap:break-word}
*:not(pre)>code.nobreak{word-wrap:normal}
*:not(pre)>code.nowrap{white-space:nowrap}
pre,pre>code{line-height:1.45;color:rgba(0,0,0,.9);font-family:"Droid Sans Mono","DejaVu Sans Mono",monospace;font-weight:400;text-rendering:optimizeSpeed}
em em{font-style:normal}
strong strong{font-weight:400}
.keyseq{color:rgba(51,51,51,.8)}
kbd{font-family:"Droid Sans Mono","DejaVu Sans Mono",monospace;display:inline-block;color:rgba(0,0,0,.8);font-size:.65em;line-height:1.45;background-color:#f7f7f7;border:1px solid #ccc;-webkit-border-radius:3px;border-radius:3px;-webkit-box-shadow:0 1px 0 rgba(0,0,0,.2),0 0 0 .1em white inset;box-shadow:0 1px 0 rgba(0,0,0,.2),0 0 0 .1em #fff inset;margin:0 .15em;padding:.2em .5em;vertical-align:middle;position:relative;top:-.1em;white-space:nowrap}
.keyseq kbd:first-child{margin-left:0}
.keyseq kbd:last-child{margin-right:0}
.menuseq,.menuref{color:#000}
.menuseq b:not(.caret),.menuref{font-weight:inherit}
.menuseq{word-spacing:-.02em}
.menuseq b.caret{font-size:1.25em;line-height:.8}
.menuseq i.caret{font-weight:bold;text-align:center;width:.45em}
b.button::before,b.button::after{position:relative;top:-1px;font-weight:400}
b.button::before{content:"[";padding:0 3px 0 2px}
b.button::after{content:"]";padding:0 2px 0 3px}
p a>code:hover{color:rgba(0,0,0,.9)}
#header,#content,#footnotes,#footer{width:100%;margin-left:auto;margin-right:auto;margin-top:0;margin-bottom:0;max-width:62.5em;*zoom:1;position:relative;padding-left:.9375em;padding-right:.9375em}
#header::before,#header::after,#content::before,#content::after,#footnotes::before,#footnotes::after,#footer::before,#footer::after{content:" ";display:table}
#header::after,#content::after,#footnotes::after,#footer::after{clear:both}
#content{margin-top:1.25em}
#content::before{content:none}
#header>h1:first-child{color:rgba(0,0,0,.85);margin-top:2.25rem;margin-bottom:0}
#header>h1:first-child+#toc{margin-top:8px;border-top:1px solid #ddddd8}
#header>h1:only-child,body.toc2 #header>h1:nth-last-child(2){border-bottom:1px solid #ddddd8;padding-bottom:8px}
#header .details{border-bottom:1px solid #ddddd8;line-height:1.45;padding-top:.25em;padding-bottom:.25em;padding-left:.25em;color:rgba(0,0,0,.6);display:-ms-flexbox;display:-webkit-flex;display:flex;-ms-flex-flow:row wrap;-webkit-flex-flow:row wrap;flex-flow:row wrap}
#header .details span:first-child{margin-left:-.125em}
#header .details span.email a{color:rgba(0,0,0,.85)}
#header .details br{display:none}
#header .details br+span::before{content:"\00a0\2013\00a0"}
#header .details br+span.author::before{content:"\00a0\22c5\00a0";color:rgba(0,0,0,.85)}
#header .details br+span#revremark::before{content:"\00a0|\00a0"}
#header #revnumber{text-transform:capitalize}
#header #revnumber::after{content:"\00a0"}
#content>h1:first-child:not([class]){color:rgba(0,0,0,.85);border-bottom:1px solid #ddddd8;padding-bottom:8px;margin-top:0;padding-top:1rem;margin-bottom:1.25rem}
#toc{border-bottom:1px solid #efefed;padding-bottom:.5em}
#toc>ul{margin-left:.125em}
#toc ul.sectlevel0>li>a{font-style:italic}
#toc ul.sectlevel0 ul.sectlevel1{margin:.5em 0}
#toc ul{font-family:"Open Sans","DejaVu Sans",sans-serif;list-style-type:none}
#toc li{line-height:1.3334;margin-top:.3334em}
#toc a{text-decoration:none}
#toc a:active{text-decoration:underline}
#toctitle{color:#7a2518;font-size:1.2em}
@media screen and (min-width:768px){#toctitle{font-size:1.375em}
body.toc2{padding-left:15em;padding-right:0}
#toc.toc2{margin-top:0!important;background-color:#f8f8f7;position:fixed;width:15em;left:0;top:0;border-right:1px solid #efefed;border-top-width:0!important;border-bottom-width:0!important;z-index:1000;padding:1.25em 1em;height:100%;overflow:auto}
#toc.toc2 #toctitle{margin-top:0;margin-bottom:.8rem;font-size:1.2em}
#toc.toc2>ul{font-size:.9em;margin-bottom:0}
#toc.toc2 ul ul{margin-left:0;padding-left:1em}
#toc.toc2 ul.sectlevel0 ul.sectlevel1{padding-left:0;margin-top:.5em;margin-bottom:.5em}
body.toc2.toc-right{padding-left:0;padding-right:15em}
body.toc2.toc-right #toc.toc2{border-right-width:0;border-left:1px solid #efefed;left:auto;right:0}}
@media screen and (min-width:1280px){body.toc2{padding-left:20em;padding-right:0}
#toc.toc2{width:20em}
#toc.toc2 #toctitle{font-size:1.375em}
#toc.toc2>ul{font-size:.95em}
#toc.toc2 ul ul{padding-left:1.25em}
body.toc2.toc-right{padding-left:0;padding-right:20em}}
#content #toc{border-style:solid;border-width:1px;border-color:#e0e0dc;margin-bottom:1.25em;padding:1.25em;background:#f8f8f7;-webkit-border-radius:4px;border-radius:4px}
#content #toc>:first-child{margin-top:0}
#content #toc>:last-child{margin-bottom:0}
#footer{max-width:100%;background-color:rgba(0,0,0,.8);padding:1.25em}
#footer-text{color:rgba(255,255,255,.8);line-height:1.44}
#content{margin-bottom:.625em}
.sect1{padding-bottom:.625em}
@media screen and (min-width:768px){#content{margin-bottom:1.25em}
.sect1{padding-bottom:1.25em}}
.sect1:last-child{padding-bottom:0}
.sect1+.sect1{border-top:1px solid #efefed}
#content h1>a.anchor,h2>a.anchor,h3>a.anchor,#toctitle>a.anchor,.sidebarblock>.content>.title>a.anchor,h4>a.anchor,h5>a.anchor,h6>a.anchor{position:absolute;z-index:1001;width:1.5ex;margin-left:-1.5ex;display:block;text-decoration:none!important;visibility:hidden;text-align:center;font-weight:400}
#content h1>a.anchor::before,h2>a.anchor::before,h3>a.anchor::before,#toctitle>a.anchor::before,.sidebarblock>.content>.title>a.anchor::before,h4>a.anchor::before,h5>a.anchor::before,h6>a.anchor::before{content:"\00A7";font-size:.85em;display:block;padding-top:.1em}
#content h1:hover>a.anchor,#content h1>a.anchor:hover,h2:hover>a.anchor,h2>a.anchor:hover,h3:hover>a.anchor,#toctitle:hover>a.anchor,.sidebarblock>.content>.title:hover>a.anchor,h3>a.anchor:hover,#toctitle>a.anchor:hover,.sidebarblock>.content>.title>a.anchor:hover,h4:hover>a.anchor,h4>a.anchor:hover,h5:hover>a.anchor,h5>a.anchor:hover,h6:hover>a.anchor,h6>a.anchor:hover{visibility:visible}
#content h1>a.link,h2>a.link,h3>a.link,#toctitle>a.link,.sidebarblock>.content>.title>a.link,h4>a.link,h5>a.link,h6>a.link{color:#ba3925;text-decoration:none}
#content h1>a.link:hover,h2>a.link:hover,h3>a.link:hover,#toctitle>a.link:hover,.sidebarblock>.content>.title>a.link:hover,h4>a.link:hover,h5>a.link:hover,h6>a.link:hover{color:#a53221}
.audioblock,.imageblock,.literalblock,.listingblock,.stemblock,.videoblock{margin-bottom:1.25em}
.admonitionblock td.content>.title,.audioblock>.title,.exampleblock>.title,.imageblock>.title,.listingblock>.title,.literalblock>.title,.stemblock>.title,.openblock>.title,.paragraph>.title,.quoteblock>.title,table.tableblock>.title,.verseblock>.title,.videoblock>.title,.dlist>.title,.olist>.title,.ulist>.title,.qlist>.title,.hdlist>.title{text-rendering:optimizeLegibility;text-align:left;font-family:"Noto Serif","DejaVu Serif",serif;font-size:1rem;font-style:italic}
table.tableblock.fit-content>caption.title{white-space:nowrap;width:0}
.paragraph.lead>p,#preamble>.sectionbody>[class="paragraph"]:first-of-type p{font-size:1.21875em;line-height:1.6;color:rgba(0,0,0,.85)}
table.tableblock #preamble>.sectionbody>[class="paragraph"]:first-of-type p{font-size:inherit}
.admonitionblock>table{border-collapse:separate;border:0;background:none;width:100%}
.admonitionblock>table td.icon{text-align:center;width:80px}
.admonitionblock>table td.icon img{max-width:none}
.admonitionblock>table td.icon .title{font-weight:bold;font-family:"Open Sans","DejaVu Sans",sans-serif;text-transform:uppercase}
.admonitionblock>table td.content{padding-left:1.125em;padding-right:1.25em;border-left:1px solid #ddddd8;color:rgba(0,0,0,.6)}
.admonitionblock>table td.content>:last-child>:last-child{margin-bottom:0}
.exampleblock>.content{border-style:solid;border-width:1px;border-color:#e6e6e6;margin-bottom:1.25em;padding:1.25em;background:#fff;-webkit-border-radius:4px;border-radius:4px}
.exampleblock>.content>:first-child{margin-top:0}
.exampleblock>.content>:last-child{margin-bottom:0}
.sidebarblock{border-style:solid;border-width:1px;border-color:#e0e0dc;margin-bottom:1.25em;padding:1.25em;background:#f8f8f7;-webkit-border-radius:4px;border-radius:4px}
.sidebarblock>:first-child{margin-top:0}
.sidebarblock>:last-child{margin-bottom:0}
.sidebarblock>.content>.title{color:#7a2518;margin-top:0;text-align:center}
.exampleblock>.content>:last-child>:last-child,.exampleblock>.content .olist>ol>li:last-child>:last-child,.exampleblock>.content .ulist>ul>li:last-child>:last-child,.exampleblock>.content .qlist>ol>li:last-child>:last-child,.sidebarblock>.content>:last-child>:last-child,.sidebarblock>.content .olist>ol>li:last-child>:last-child,.sidebarblock>.content .ulist>ul>li:last-child>:last-child,.sidebarblock>.content .qlist>ol>li:last-child>:last-child{margin-bottom:0}
.literalblock pre,.listingblock pre:not(.highlight),.listingblock pre[class="highlight"],.listingblock pre[class^="highlight "],.listingblock pre.CodeRay,.listingblock pre.prettyprint{background:#f7f7f8}
.sidebarblock .literalblock pre,.sidebarblock .listingblock pre:not(.highlight),.sidebarblock .listingblock pre[class="highlight"],.sidebarblock .listingblock pre[class^="highlight "],.sidebarblock .listingblock pre.CodeRay,.sidebarblock .listingblock pre.prettyprint{background:#f2f1f1}
.literalblock pre,.literalblock pre[class],.listingblock pre,.listingblock pre[class]{-webkit-border-radius:4px;border-radius:4px;word-wrap:break-word;padding:1em;font-size:.8125em}
.literalblock pre.nowrap,.literalblock pre[class].nowrap,.listingblock pre.nowrap,.listingblock pre[class].nowrap{overflow-x:auto;white-space:pre;word-wrap:normal}
@media screen and (min-width:768px){.literalblock pre,.literalblock pre[class],.listingblock pre,.listingblock pre[class]{font-size:.90625em}}
@media screen and (min-width:1280px){.literalblock pre,.literalblock pre[class],.listingblock pre,.listingblock pre[class]{font-size:1em}}
.literalblock.output pre{color:#f7f7f8;background-color:rgba(0,0,0,.9)}
.listingblock pre.highlightjs{padding:0}
.listingblock pre.highlightjs>code{padding:1em;-webkit-border-radius:4px;border-radius:4px}
.listingblock pre.prettyprint{border-width:0}
.listingblock>.content{position:relative}
.listingblock code[data-lang]::before{display:none;content:attr(data-lang);position:absolute;font-size:.75em;top:.425rem;right:.5rem;line-height:1;text-transform:uppercase;color:#999}
.listingblock:hover code[data-lang]::before{display:block}
.listingblock.terminal pre .command::before{content:attr(data-prompt);padding-right:.5em;color:#999}
.listingblock.terminal pre .command:not([data-prompt])::before{content:"$"}
table.pyhltable{border-collapse:separate;border:0;margin-bottom:0;background:none}
table.pyhltable td{vertical-align:top;padding-top:0;padding-bottom:0;line-height:1.45}
table.pyhltable td.code{padding-left:.75em;padding-right:0}
pre.pygments .lineno,table.pyhltable td:not(.code){color:#999;padding-left:0;padding-right:.5em;border-right:1px solid #ddddd8}
pre.pygments .lineno{display:inline-block;margin-right:.25em}
table.pyhltable .linenodiv{background:none!important;padding-right:0!important}
.quoteblock{margin:0 1em 1.25em 1.5em;display:table}
.quoteblock>.title{margin-left:-1.5em;margin-bottom:.75em}
.quoteblock blockquote,.quoteblock blockquote p{color:rgba(0,0,0,.85);font-size:1.15rem;line-height:1.75;word-spacing:.1em;letter-spacing:0;font-style:italic;text-align:justify}
.quoteblock blockquote{margin:0;padding:0;border:0}
.quoteblock blockquote::before{content:"\201c";float:left;font-size:2.75em;font-weight:bold;line-height:.6em;margin-left:-.6em;color:#7a2518;text-shadow:0 1px 2px rgba(0,0,0,.1)}
.quoteblock blockquote>.paragraph:last-child p{margin-bottom:0}
.quoteblock .attribution{margin-top:.5em;margin-right:.5ex;text-align:right}
.quoteblock .quoteblock{margin-left:0;margin-right:0;padding:.5em 0;border-left:3px solid rgba(0,0,0,.6)}
.quoteblock .quoteblock blockquote{padding:0 0 0 .75em}
.quoteblock .quoteblock blockquote::before{display:none}
.verseblock{margin:0 1em 1.25em}
.verseblock pre{font-family:"Open Sans","DejaVu Sans",sans;font-size:1.15rem;color:rgba(0,0,0,.85);font-weight:300;text-rendering:optimizeLegibility}
.verseblock pre strong{font-weight:400}
.verseblock .attribution{margin-top:1.25rem;margin-left:.5ex}
.quoteblock .attribution,.verseblock .attribution{font-size:.9375em;line-height:1.45;font-style:italic}
.quoteblock .attribution br,.verseblock .attribution br{display:none}
.quoteblock .attribution cite,.verseblock .attribution cite{display:block;letter-spacing:-.025em;color:rgba(0,0,0,.6)}
.quoteblock.abstract{margin:0 1em 1.25em;display:block}
.quoteblock.abstract>.title{margin:0 0 .375em;font-size:1.15em;text-align:center}
.quoteblock.abstract blockquote,.quoteblock.abstract blockquote p{word-spacing:0;line-height:1.6}
.quoteblock.abstract blockquote::before,.quoteblock.abstract p::before{display:none}
table.tableblock{max-width:100%;border-collapse:separate}
p.tableblock:last-child{margin-bottom:0}
td.tableblock>.content{margin-bottom:-1.25em}
table.tableblock,th.tableblock,td.tableblock{border:0 solid #dedede}
table.grid-all>thead>tr>.tableblock,table.grid-all>tbody>tr>.tableblock{border-width:0 1px 1px 0}
table.grid-all>tfoot>tr>.tableblock{border-width:1px 1px 0 0}
table.grid-cols>*>tr>.tableblock{border-width:0 1px 0 0}
table.grid-rows>thead>tr>.tableblock,table.grid-rows>tbody>tr>.tableblock{border-width:0 0 1px}
table.grid-rows>tfoot>tr>.tableblock{border-width:1px 0 0}
table.grid-all>*>tr>.tableblock:last-child,table.grid-cols>*>tr>.tableblock:last-child{border-right-width:0}
table.grid-all>tbody>tr:last-child>.tableblock,table.grid-all>thead:last-child>tr>.tableblock,table.grid-rows>tbody>tr:last-child>.tableblock,table.grid-rows>thead:last-child>tr>.tableblock{border-bottom-width:0}
table.frame-all{border-width:1px}
table.frame-sides{border-width:0 1px}
table.frame-topbot,table.frame-ends{border-width:1px 0}
table.stripes-all tr,table.stripes-odd tr:nth-of-type(odd){background:#f8f8f7}
table.stripes-none tr,table.stripes-odd tr:nth-of-type(even){background:none}
th.halign-left,td.halign-left{text-align:left}
th.halign-right,td.halign-right{text-align:right}
th.halign-center,td.halign-center{text-align:center}
th.valign-top,td.valign-top{vertical-align:top}
th.valign-bottom,td.valign-bottom{vertical-align:bottom}
th.valign-middle,td.valign-middle{vertical-align:middle}
table thead th,table tfoot th{font-weight:bold}
tbody tr th{display:table-cell;line-height:1.6;background:#f7f8f7}
tbody tr th,tbody tr th p,tfoot tr th,tfoot tr th p{color:rgba(0,0,0,.8);font-weight:bold}
p.tableblock>code:only-child{background:none;padding:0}
p.tableblock{font-size:1em}
td>div.verse{white-space:pre}
ol{margin-left:1.75em}
ul li ol{margin-left:1.5em}
dl dd{margin-left:1.125em}
dl dd:last-child,dl dd:last-child>:last-child{margin-bottom:0}
ol>li p,ul>li p,ul dd,ol dd,.olist .olist,.ulist .ulist,.ulist .olist,.olist .ulist{margin-bottom:.625em}
ul.checklist,ul.none,ol.none,ul.no-bullet,ol.no-bullet,ol.unnumbered,ul.unstyled,ol.unstyled{list-style-type:none}
ul.no-bullet,ol.no-bullet,ol.unnumbered{margin-left:.625em}
ul.unstyled,ol.unstyled{margin-left:0}
ul.checklist{margin-left:.625em}
ul.checklist li>p:first-child>.fa-square-o:first-child,ul.checklist li>p:first-child>.fa-check-square-o:first-child{width:1.25em;font-size:.8em;position:relative;bottom:.125em}
ul.checklist li>p:first-child>input[type="checkbox"]:first-child{margin-right:.25em}
ul.inline{display:-ms-flexbox;display:-webkit-box;display:flex;-ms-flex-flow:row wrap;-webkit-flex-flow:row wrap;flex-flow:row wrap;list-style:none;margin:0 0 .625em -1.25em}
ul.inline>li{margin-left:1.25em}
.unstyled dl dt{font-weight:400;font-style:normal}
ol.arabic{list-style-type:decimal}
ol.decimal{list-style-type:decimal-leading-zero}
ol.loweralpha{list-style-type:lower-alpha}
ol.upperalpha{list-style-type:upper-alpha}
ol.lowerroman{list-style-type:lower-roman}
ol.upperroman{list-style-type:upper-roman}
ol.lowergreek{list-style-type:lower-greek}
.hdlist>table,.colist>table{border:0;background:none}
.hdlist>table>tbody>tr,.colist>table>tbody>tr{background:none}
td.hdlist1,td.hdlist2{vertical-align:top;padding:0 .625em}
td.hdlist1{font-weight:bold;padding-bottom:1.25em}
.literalblock+.colist,.listingblock+.colist{margin-top:-.5em}
.colist td:not([class]):first-child{padding:.4em .75em 0;line-height:1;vertical-align:top}
.colist td:not([class]):first-child img{max-width:none}
.colist td:not([class]):last-child{padding:.25em 0}
.thumb,.th{line-height:0;display:inline-block;border:solid 4px #fff;-webkit-box-shadow:0 0 0 1px #ddd;box-shadow:0 0 0 1px #ddd}
.imageblock.left,.imageblock[style*="float: left"]{margin:.25em .625em 1.25em 0}
.imageblock.right,.imageblock[style*="float: right"]{margin:.25em 0 1.25em .625em}
.imageblock>.title{margin-bottom:0}
.imageblock.thumb,.imageblock.th{border-width:6px}
.imageblock.thumb>.title,.imageblock.th>.title{padding:0 .125em}
.image.left,.image.right{margin-top:.25em;margin-bottom:.25em;display:inline-block;line-height:0}
.image.left{margin-right:.625em}
.image.right{margin-left:.625em}
a.image{text-decoration:none;display:inline-block}
a.image object{pointer-events:none}
sup.footnote,sup.footnoteref{font-size:.875em;position:static;vertical-align:super}
sup.footnote a,sup.footnoteref a{text-decoration:none}
sup.footnote a:active,sup.footnoteref a:active{text-decoration:underline}
#footnotes{padding-top:.75em;padding-bottom:.75em;margin-bottom:.625em}
#footnotes hr{width:20%;min-width:6.25em;margin:-.25em 0 .75em;border-width:1px 0 0}
#footnotes .footnote{padding:0 .375em 0 .225em;line-height:1.3334;font-size:.875em;margin-left:1.2em;margin-bottom:.2em}
#footnotes .footnote a:first-of-type{font-weight:bold;text-decoration:none;margin-left:-1.05em}
#footnotes .footnote:last-of-type{margin-bottom:0}
#content #footnotes{margin-top:-.625em;margin-bottom:0;padding:.75em 0}
.gist .file-data>table{border:0;background:#fff;width:100%;margin-bottom:0}
.gist .file-data>table td.line-data{width:99%}
div.unbreakable{page-break-inside:avoid}
.big{font-size:larger}
.small{font-size:smaller}
.underline{text-decoration:underline}
.overline{text-decoration:overline}
.line-through{text-decoration:line-through}
.aqua{color:#00bfbf}
.aqua-background{background-color:#00fafa}
.black{color:#000}
.black-background{background-color:#000}
.blue{color:#0000bf}
.blue-background{background-color:#0000fa}
.fuchsia{color:#bf00bf}
.fuchsia-background{background-color:#fa00fa}
.gray{color:#606060}
.gray-background{background-color:#7d7d7d}
.green{color:#006000}
.green-background{background-color:#007d00}
.lime{color:#00bf00}
.lime-background{background-color:#00fa00}
.maroon{color:#600000}
.maroon-background{background-color:#7d0000}
.navy{color:#000060}
.navy-background{background-color:#00007d}
.olive{color:#606000}
.olive-background{background-color:#7d7d00}
.purple{color:#600060}
.purple-background{background-color:#7d007d}
.red{color:#bf0000}
.red-background{background-color:#fa0000}
.silver{color:#909090}
.silver-background{background-color:#bcbcbc}
.teal{color:#006060}
.teal-background{background-color:#007d7d}
.white{color:#bfbfbf}
.white-background{background-color:#fafafa}
.yellow{color:#bfbf00}
.yellow-background{background-color:#fafa00}
span.icon>.fa{cursor:default}
a span.icon>.fa{cursor:inherit}
.admonitionblock td.icon [class^="fa icon-"]{font-size:2.5em;text-shadow:1px 1px 2px rgba(0,0,0,.5);cursor:default}
.admonitionblock td.icon .icon-note::before{content:"\f05a";color:#19407c}
.admonitionblock td.icon .icon-tip::before{content:"\f0eb";text-shadow:1px 1px 2px rgba(155,155,0,.8);color:#111}
.admonitionblock td.icon .icon-warning::before{content:"\f071";color:#bf6900}
.admonitionblock td.icon .icon-caution::before{content:"\f06d";color:#bf3400}
.admonitionblock td.icon .icon-important::before{content:"\f06a";color:#bf0000}
.conum[data-value]{display:inline-block;color:#fff!important;background-color:rgba(0,0,0,.8);-webkit-border-radius:100px;border-radius:100px;text-align:center;font-size:.75em;width:1.67em;height:1.67em;line-height:1.67em;font-family:"Open Sans","DejaVu Sans",sans-serif;font-style:normal;font-weight:bold}
.conum[data-value] *{color:#fff!important}
.conum[data-value]+b{display:none}
.conum[data-value]::after{content:attr(data-value)}
pre .conum[data-value]{position:relative;top:-.125em}
b.conum *{color:inherit!important}
.conum:not([data-value]):empty{display:none}
dt,th.tableblock,td.content,div.footnote{text-rendering:optimizeLegibility}
h1,h2,p,td.content,span.alt{letter-spacing:-.01em}
p strong,td.content strong,div.footnote strong{letter-spacing:-.005em}
p,blockquote,dt,td.content,span.alt{font-size:1.0625rem}
p{margin-bottom:1.25rem}
.sidebarblock p,.sidebarblock dt,.sidebarblock td.content,p.tableblock{font-size:1em}
.exampleblock>.content{background-color:#fffef7;border-color:#e0e0dc;-webkit-box-shadow:0 1px 4px #e0e0dc;box-shadow:0 1px 4px #e0e0dc}
.print-only{display:none!important}
@page{margin:1.25cm .75cm}
@media print{*{-webkit-box-shadow:none!important;box-shadow:none!important;text-shadow:none!important}
html{font-size:80%}
a{color:inherit!important;text-decoration:underline!important}
a.bare,a[href^="#"],a[href^="mailto:"]{text-decoration:none!important}
a[href^="http:"]:not(.bare)::after,a[href^="https:"]:not(.bare)::after{content:"(" attr(href) ")";display:inline-block;font-size:.875em;padding-left:.25em}
abbr[title]::after{content:" (" attr(title) ")"}
pre,blockquote,tr,img,object,svg{page-break-inside:avoid}
thead{display:table-header-group}
svg{max-width:100%}
p,blockquote,dt,td.content{font-size:1em;orphans:3;widows:3}
h2,h3,#toctitle,.sidebarblock>.content>.title{page-break-after:avoid}
#toc,.sidebarblock,.exampleblock>.content{background:none!important}
#toc{border-bottom:1px solid #ddddd8!important;padding-bottom:0!important}
body.book #header{text-align:center}
body.book #header>h1:first-child{border:0!important;margin:2.5em 0 1em}
body.book #header .details{border:0!important;display:block;padding:0!important}
body.book #header .details span:first-child{margin-left:0!important}
body.book #header .details br{display:block}
body.book #header .details br+span::before{content:none!important}
body.book #toc{border:0!important;text-align:left!important;padding:0!important;margin:0!important}
body.book #toc,body.book #preamble,body.book h1.sect0,body.book .sect1>h2{page-break-before:always}
.listingblock code[data-lang]::before{display:block}
#footer{padding:0 .9375em}
.hide-on-print{display:none!important}
.print-only{display:block!important}
.hide-for-print{display:none!important}
.show-for-print{display:inherit!important}}
@media print,amzn-kf8{#header>h1:first-child{margin-top:1.25rem}
.sect1{padding:0!important}
.sect1+.sect1{border:0}
#footer{background:none}
#footer-text{color:rgba(0,0,0,.6);font-size:.9em}}
@media amzn-kf8{#header,#content,#footnotes,#footer{padding:0}}
</style>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<style>
/* Stylesheet for CodeRay to match GitHub theme | MIT License | http://foundation.zurb.com */
/*pre.CodeRay {background-color:#f7f7f8;}*/
.CodeRay .line-numbers{border-right:1px solid #d8d8d8;padding:0 0.5em 0 .25em}
.CodeRay span.line-numbers{display:inline-block;margin-right:.5em;color:rgba(0,0,0,.3)}
.CodeRay .line-numbers strong{color:rgba(0,0,0,.4)}
table.CodeRay{border-collapse:separate;border-spacing:0;margin-bottom:0;border:0;background:none}
table.CodeRay td{vertical-align: top;line-height:1.45}
table.CodeRay td.line-numbers{text-align:right}
table.CodeRay td.line-numbers>pre{padding:0;color:rgba(0,0,0,.3)}
table.CodeRay td.code{padding:0 0 0 .5em}
table.CodeRay td.code>pre{padding:0}
.CodeRay .debug{color:#fff !important;background:#000080 !important}
.CodeRay .annotation{color:#007}
.CodeRay .attribute-name{color:#000080}
.CodeRay .attribute-value{color:#700}
.CodeRay .binary{color:#509}
.CodeRay .comment{color:#998;font-style:italic}
.CodeRay .char{color:#04d}
.CodeRay .char .content{color:#04d}
.CodeRay .char .delimiter{color:#039}
.CodeRay .class{color:#458;font-weight:bold}
.CodeRay .complex{color:#a08}
.CodeRay .constant,.CodeRay .predefined-constant{color:#008080}
.CodeRay .color{color:#099}
.CodeRay .class-variable{color:#369}
.CodeRay .decorator{color:#b0b}
.CodeRay .definition{color:#099}
.CodeRay .delimiter{color:#000}
.CodeRay .doc{color:#970}
.CodeRay .doctype{color:#34b}
.CodeRay .doc-string{color:#d42}
.CodeRay .escape{color:#666}
.CodeRay .entity{color:#800}
.CodeRay .error{color:#808}
.CodeRay .exception{color:inherit}
.CodeRay .filename{color:#099}
.CodeRay .function{color:#900;font-weight:bold}
.CodeRay .global-variable{color:#008080}
.CodeRay .hex{color:#058}
.CodeRay .integer,.CodeRay .float{color:#099}
.CodeRay .include{color:#555}
.CodeRay .inline{color:#000}
.CodeRay .inline .inline{background:#ccc}
.CodeRay .inline .inline .inline{background:#bbb}
.CodeRay .inline .inline-delimiter{color:#d14}
.CodeRay .inline-delimiter{color:#d14}
.CodeRay .important{color:#555;font-weight:bold}
.CodeRay .interpreted{color:#b2b}
.CodeRay .instance-variable{color:#008080}
.CodeRay .label{color:#970}
.CodeRay .local-variable{color:#963}
.CodeRay .octal{color:#40e}
.CodeRay .predefined{color:#369}
.CodeRay .preprocessor{color:#579}
.CodeRay .pseudo-class{color:#555}
.CodeRay .directive{font-weight:bold}
.CodeRay .type{font-weight:bold}
.CodeRay .predefined-type{color:inherit}
.CodeRay .reserved,.CodeRay .keyword {color:#000;font-weight:bold}
.CodeRay .key{color:#808}
.CodeRay .key .delimiter{color:#606}
.CodeRay .key .char{color:#80f}
.CodeRay .value{color:#088}
.CodeRay .regexp .delimiter{color:#808}
.CodeRay .regexp .content{color:#808}
.CodeRay .regexp .modifier{color:#808}
.CodeRay .regexp .char{color:#d14}
.CodeRay .regexp .function{color:#404;font-weight:bold}
.CodeRay .string{color:#d20}
.CodeRay .string .string .string{background:#ffd0d0}
.CodeRay .string .content{color:#d14}
.CodeRay .string .char{color:#d14}
.CodeRay .string .delimiter{color:#d14}
.CodeRay .shell{color:#d14}
.CodeRay .shell .delimiter{color:#d14}
.CodeRay .symbol{color:#990073}
.CodeRay .symbol .content{color:#a60}
.CodeRay .symbol .delimiter{color:#630}
.CodeRay .tag{color:#008080}
.CodeRay .tag-special{color:#d70}
.CodeRay .variable{color:#036}
.CodeRay .insert{background:#afa}
.CodeRay .delete{background:#faa}
.CodeRay .change{color:#aaf;background:#007}
.CodeRay .head{color:#f8f;background:#505}
.CodeRay .insert .insert{color:#080}
.CodeRay .delete .delete{color:#800}
.CodeRay .change .change{color:#66f}
.CodeRay .head .head{color:#f4f}
</style>
</head>
<body class="book toc2 toc-left">
<div id="header">
<h1>深度思考之机器学习系列</h1>
<div class="details">
<span id="author" class="author">xjtu-zhongyingLi</span><br>
<span id="revdate">2018-07-22</span>
</div>
<div id="toc" class="toc2">
<div id="toctitle">目录</div>
<ul class="sectlevel1">
<li><a href="#_机器学习基本概念">1. 机器学习基本概念</a>
<ul class="sectlevel2">
<li><a href="#_统计学习">1.1. 统计学习</a></li>
<li><a href="#_统计学习三要素">1.2. 统计学习三要素</a>
<ul class="sectlevel3">
<li><a href="#_模型">1.2.1. 模型</a></li>
<li><a href="#_策略">1.2.2. 策略</a>
<ul class="sectlevel4">
<li><a href="#_损失函数">1.2.2.1. 损失函数</a></li>
<li><a href="#_经验风险最小化">1.2.2.2. 经验风险最小化</a></li>
<li><a href="#_结构风险最小化">1.2.2.3. 结构风险最小化</a></li>
</ul>
</li>
<li><a href="#_算法">1.2.3. 算法</a></li>
</ul>
</li>
<li><a href="#_模型评估">1.3. 模型评估</a>
<ul class="sectlevel3">
<li><a href="#_正则化">1.3.1. 正则化</a></li>
<li><a href="#_交叉验证">1.3.2. 交叉验证</a></li>
<li><a href="#_泛化能力">1.3.3. 泛化能力</a></li>
<li><a href="#_生成模型和判别模型">1.3.4. 生成模型和判别模型</a>
<ul class="sectlevel4">
<li><a href="#_判别模型">1.3.4.1. 判别模型</a></li>
<li><a href="#_生成模型">1.3.4.2. 生成模型</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_深度思考">1.4. 深度思考</a>
<ul class="sectlevel3">
<li><a href="#_贝叶斯理论">1.4.1. 贝叶斯理论</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_线性回归与逻辑回归">2. 线性回归与逻辑回归</a>
<ul class="sectlevel2">
<li><a href="#_线性回归">2.1. 线性回归</a>
<ul class="sectlevel3">
<li><a href="#_概念">2.1.1. 概念</a></li>
<li><a href="#_梯度下降">2.1.2. 梯度下降</a></li>
<li><a href="#_梯度下降的局限性">2.1.3. 梯度下降的局限性</a></li>
<li><a href="#_深度思考_2">2.1.4. 深度思考</a></li>
</ul>
</li>
<li><a href="#_逻辑回归">2.2. 逻辑回归</a>
<ul class="sectlevel3">
<li><a href="#_揭开面纱">2.2.1. 揭开面纱</a></li>
<li><a href="#_sigmoid函数">2.2.2. Sigmoid函数</a></li>
<li><a href="#_参数更新">2.2.3. 参数更新</a></li>
<li><a href="#_深度思考_3">2.2.4. 深度思考</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_特征工程">3. 特征工程</a>
<ul class="sectlevel2">
<li><a href="#_引子">3.1. 引子</a></li>
<li><a href="#_特征工程_2">3.2. 特征工程</a>
<ul class="sectlevel3">
<li><a href="#_数据清洗">3.2.1. 数据清洗</a></li>
<li><a href="#_数据采样">3.2.2. 数据采样</a></li>
<li><a href="#_特征处理">3.2.3. 特征处理</a>
<ul class="sectlevel4">
<li><a href="#_数值型特征">3.2.3.1. 数值型特征</a></li>
<li><a href="#_类别型特征">3.2.3.2. 类别型特征</a></li>
<li><a href="#_时间型特征">3.2.3.3. 时间型特征</a></li>
<li><a href="#_文本型特征">3.2.3.4. 文本型特征</a></li>
<li><a href="#_统计特征">3.2.3.5. 统计特征</a></li>
<li><a href="#_组合特征">3.2.3.6. 组合特征</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li><a href="#_支持向量机">4. 支持向量机</a>
<ul class="sectlevel2">
<li><a href="#_开门见山">4.1. 开门见山</a></li>
<li><a href="#_高维空间">4.2. 高维空间</a>
<ul class="sectlevel3">
<li><a href="#_超平面的表示">4.2.1. 超平面的表示</a></li>
<li><a href="#_点到平面距离">4.2.2. 点到平面距离</a></li>
</ul>
</li>
<li><a href="#_问题优化">4.3. 问题优化</a>
<ul class="sectlevel3">
<li><a href="#_理解对偶问题">4.3.1. 理解对偶问题</a></li>
<li><a href="#_等价性证明">4.3.2. 等价性证明</a></li>
</ul>
</li>
<li><a href="#_对偶问题求解">4.4. 对偶问题求解</a>
<ul class="sectlevel3">
<li><a href="#_推导和结论">4.4.1. 推导和结论</a></li>
<li><a href="#_smo算法">4.4.2. SMO算法</a>
<ul class="sectlevel4">
<li><a href="#_smo算法思想">4.4.2.1. SMO算法思想</a></li>
<li><a href="#_二次规划求解方法">4.4.2.2. 二次规划求解方法</a></li>
<li><a href="#_公式证明">4.4.2.3. 公式证明</a></li>
<li><a href="#_变量选择方法">4.4.2.4. 变量选择方法</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_软间隔分类器">4.5. 软间隔分类器</a>
<ul class="sectlevel3">
<li><a href="#_优化问题">4.5.1. 优化问题</a></li>
<li><a href="#_合页损失">4.5.2. 合页损失</a></li>
</ul>
</li>
<li><a href="#_核技巧">4.6. 核技巧</a></li>
<li><a href="#_深度思考_4">4.7. 深度思考</a>
<ul class="sectlevel3">
<li><a href="#_深入理解kkt条件">4.7.1. 深入理解KKT条件</a>
<ul class="sectlevel4">
<li><a href="#_什么是kkt条件">4.7.1.1. 什么是KKT条件</a></li>
<li><a href="#_等式约束优化问题">4.7.1.2. 等式约束优化问题</a></li>
<li><a href="#_不等式约束优化问题">4.7.1.3. 不等式约束优化问题</a></li>
</ul>
</li>
<li><a href="#_如何理解高斯核映射至无穷维">4.7.2. 如何理解高斯核映射至无穷维</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_主题模型">5. 主题模型</a>
<ul class="sectlevel2">
<li><a href="#_解决什么问题">5.1. 解决什么问题</a></li>
<li><a href="#_给问题建模">5.2. 给问题建模</a>
<ul class="sectlevel3">
<li><a href="#_建模">5.2.1. 建模</a></li>
<li><a href="#_第一次思考">5.2.2. 第一次思考</a></li>
<li><a href="#_第二次思考">5.2.3. 第二次思考</a>
<ul class="sectlevel4">
<li><a href="#_一个重大的发现">5.2.3.1. 一个重大的发现</a></li>
<li><a href="#_metropolis_hastings算法">5.2.3.2. Metropolis Hastings算法</a></li>
<li><a href="#_gibbs_sampling_算法">5.2.3.3. Gibbs Sampling 算法</a></li>
</ul>
</li>
<li><a href="#_第三次思考">5.2.4. 第三次思考</a></li>
</ul>
</li>
<li><a href="#_文本建模">5.3. 文本建模</a>
<ul class="sectlevel3">
<li><a href="#_文档是如何产生的">5.3.1. 文档是如何产生的</a></li>
<li><a href="#_plsa模型">5.3.2. PLSA模型</a></li>
<li><a href="#_lda模型">5.3.3. LDA模型</a>
<ul class="sectlevel4">
<li><a href="#_二项分布">5.3.3.1. 二项分布</a></li>
<li><a href="#_神奇的_gamma_函数">5.3.3.2. 神奇的 <code>Gamma</code> 函数</a></li>
<li><a href="#_beta_函数">5.3.3.3. <code>Beta</code> 函数</a></li>
<li><a href="#_第四次思考">5.3.3.4. 第四次思考</a></li>
<li><a href="#_dirichlet_分布">5.3.3.5. <code>Dirichlet</code> 分布</a></li>
<li><a href="#_lda_模型">5.3.3.6. <code>LDA</code> 模型</a></li>
<li><a href="#_模型训练和推演">5.3.3.7. 模型训练和推演</a></li>
</ul>
</li>
<li><a href="#_变分em算法求解plsa模型">5.3.4. 变分EM算法求解pLSA模型</a>
<ul class="sectlevel4">
<li><a href="#_em算法">5.3.4.1. EM算法</a></li>
<li><a href="#_求解plsa算法">5.3.4.2. 求解pLSA算法</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_终篇">5.4. 终篇</a></li>
</ul>
</li>
<li><a href="#_最大熵理论和多分类器">6. 最大熵理论和多分类器</a>
<ul class="sectlevel2">
<li><a href="#_最大熵原理">6.1. 最大熵原理</a>
<ul class="sectlevel3">
<li><a href="#_最大熵模型的定义">6.1.1. 最大熵模型的定义</a></li>
<li><a href="#_最大熵模型的推导">6.1.2. 最大熵模型的推导</a></li>
<li><a href="#_多分类器">6.1.3. 多分类器</a></li>
</ul>
</li>
<li><a href="#_指数分布簇">6.2. 指数分布簇</a></li>
<li><a href="#_广义线形模型">6.3. 广义线形模型</a></li>
<li><a href="#_广义线形模型应用_多项式分布">6.4. 广义线形模型应用-多项式分布</a></li>
</ul>
</li>
<li><a href="#_em_算法">7. <code>EM</code> 算法</a>
<ul class="sectlevel2">
<li><a href="#_前置知识点">7.1. 前置知识点</a>
<ul class="sectlevel3">
<li><a href="#_jensen不等式">7.1.1. Jensen不等式</a></li>
<li><a href="#_最大似然估计">7.1.2. 最大似然估计</a></li>
</ul>
</li>
<li><a href="#_em算法_2">7.2. EM算法</a>
<ul class="sectlevel3">
<li><a href="#_直通结论">7.2.1. 直通结论</a></li>
<li><a href="#_em推导">7.2.2. EM推导</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_决策树和集成学习">8. 决策树和集成学习</a>
<ul class="sectlevel2">
<li><a href="#_决策树模型">8.1. 决策树模型</a>
<ul class="sectlevel3">
<li><a href="#_决策树思想">8.1.1. 决策树思想</a></li>
<li><a href="#_特征选择">8.1.2. 特征选择</a>
<ul class="sectlevel4">
<li><a href="#_信息熵">8.1.2.1. 信息熵</a></li>
<li><a href="#_信息增益">8.1.2.2. 信息增益</a></li>
<li><a href="#_信息增益比">8.1.2.3. 信息增益比</a></li>
<li><a href="#_基尼指数">8.1.2.4. 基尼指数</a></li>
</ul>
</li>
<li><a href="#_决策树生成">8.1.3. 决策树生成</a>
<ul class="sectlevel4">
<li><a href="#_cart生成">8.1.3.1. CART生成</a></li>
</ul>
</li>
<li><a href="#_决策树剪枝">8.1.4. 决策树剪枝</a></li>
</ul>
</li>
<li><a href="#_集成学习">8.2. 集成学习</a>
<ul class="sectlevel3">
<li><a href="#_bagging和随机森林">8.2.1. Bagging和随机森林</a></li>
<li><a href="#_boosting">8.2.2. Boosting</a>
<ul class="sectlevel4">
<li><a href="#_adboost详解">8.2.2.1. Adboost详解</a></li>
<li><a href="#_gbdt详解">8.2.2.2. GBDT详解</a></li>
<li><a href="#_xgboost详解">8.2.2.3. XGBoost详解</a></li>
<li><a href="#_总结">8.2.2.4. 总结</a></li>
<li><a href="#_深度思考_5">8.2.2.5. 深度思考</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li><a href="#_推荐系统">9. 推荐系统</a></li>
<li><a href="#_聚类和近邻算法">10. 聚类和近邻算法</a>
<ul class="sectlevel2">
<li><a href="#_k_means算法">10.1. K-means算法</a></li>
<li><a href="#_k_means算法_2">10.2. k-means++算法</a>
<ul class="sectlevel3">
<li><a href="#_基本理论">10.2.1. 基本理论</a></li>
<li><a href="#_算法核心">10.2.2. 算法核心</a></li>
</ul>
</li>
<li><a href="#_基于层次的聚类">10.3. 基于层次的聚类</a></li>
<li><a href="#_knn算法">10.4. KNN算法</a></li>
<li><a href="#_kd树">10.5. kd树</a>
<ul class="sectlevel3">
<li><a href="#_构造kd树">10.5.1. 构造\(kd\)树</a></li>
<li><a href="#_搜索kd树">10.5.2. 搜索\(kd\)树</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_贝叶斯理论_2">11. 贝叶斯理论</a>
<ul class="sectlevel2">
<li><a href="#_一个公式的故事">11.1. 一个公式的故事</a></li>
<li><a href="#_一些常见题目">11.2. 一些常见题目</a>
<ul class="sectlevel3">
<li><a href="#_两信封和美元的问题">11.2.1. 两信封和美元的问题</a></li>
<li><a href="#_三扇门和开奖的问题">11.2.2. 三扇门和开奖的问题</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#_隐马尔可夫模型">12. 隐马尔可夫模型</a></li>
<li><a href="#_条件随机场">13. 条件随机场</a></li>
<li><a href="#_深度学习概论">14. 深度学习概论</a></li>
<li><a href="#_深度学习中的优化算法">15. 深度学习中的优化算法</a></li>
<li><a href="#_深度学习中的正则化">16. 深度学习中的正则化</a></li>
<li><a href="#_深度神经网络">17. 深度神经网络</a></li>
<li><a href="#_卷积神经网络">18. 卷积神经网络</a></li>
<li><a href="#_循环神经网络">19. 循环神经网络</a></li>
<li><a href="#_神经网络番外篇">20. 神经网络番外篇</a></li>
<li><a href="#_生成对抗网络">21. 生成对抗网络</a></li>
<li><a href="#_迁移学习">22. 迁移学习</a></li>
<li><a href="#_强化学习">23. 强化学习</a></li>
<li><a href="#_数学之美">24. 数学之美</a>
<ul class="sectlevel2">
<li><a href="#_数学中的空间">24.1. 数学中的空间</a>
<ul class="sectlevel3">
<li><a href="#_空间关系">24.1.1. 空间关系</a></li>
<li><a href="#_希尔伯特空间">24.1.2. 希尔伯特空间</a></li>
</ul>
</li>
<li><a href="#_似然函数">24.2. 似然函数</a></li>
</ul>
</li>
<li><a href="#_深度学习框架">25. 深度学习框架</a></li>
<li><a href="#_走进互联网">26. 走进互联网</a></li>
</ul>
</div>
</div>
<div id="content">
<div id="preamble">
<div class="sectionbody">
<div class="quoteblock">
<blockquote>
数学是人类智慧的结晶,统计学习是数学领域最璀璨的明珠,算法可以让这个明珠照亮整个世界!
</blockquote>
<div class="attribution">
— 李中英<br>
<cite>世界知名互联网公司高级算法研究猿👍👍👍</cite>
</div>
</div>
</div>
</div>
<div class="sect1">
<h2 id="_机器学习基本概念">1. 机器学习基本概念</h2>
<div class="sectionbody">
<div class="sect2">
<h3 id="_统计学习">1.1. 统计学习</h3>
<div class="paragraph">
<p>统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,也成为统计机器学习。
统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去,
统计学习关于数据的基本假设是:同类数据具有一定的统计规律性.<br></p>
</div>
<div class="paragraph">
<p>统计学习的目的是对数据进行预测与分析,是通过构建概率统计模型实现的,统计学习总的目的就是考虑学习什么样的模型和如何学习模型,
以使模型能对数据进行准确的预测和分析,同时考虑尽可能的提高学习效率.<br></p>
</div>
<div class="paragraph">
<p>统计学习的方法包括:监督学习、非监督学习、半监督学习和强化学习,我们重点讨论监督学习.<br></p>
</div>
</div>
<div class="sect2">
<h3 id="_统计学习三要素">1.2. 统计学习三要素</h3>
<div class="sect3">
<h4 id="_模型">1.2.1. 模型</h4>
<div class="paragraph">
<p>在监督学习中,模型就是指要学习的条件概率分布或决策函数。假设空间中的模型一般有无穷多个,假设空间可定义为:<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
F=\left \{ f|Y=f(X) \right \}
\end{equation}</p>
</div>
<div class="paragraph">
<p>假设空间通常是由参数向量决定的函数簇,其中参数向量取值于n维欧氏空间,称为参数空间。</p>
</div>
<div class="paragraph">
<p>\begin{equation}
F=\left \{ f|Y=f_{\theta }(X),\theta \in R^{n} \right \}
\end{equation}</p>
</div>
<div class="paragraph">
<p>假设空间也可以定义为条件概率的集合:</p>
</div>
<div class="paragraph">
<p>\begin{equation}
F=\left \{ P|P_{\theta }(Y|X),\theta \in R^{n} \right \}
\end{equation}</p>
</div>
</div>
<div class="sect3">
<h4 id="_策略">1.2.2. 策略</h4>
<div class="paragraph">
<p>有了模型的假设空间,统计学习接着要考虑的是按照什么样的准则学习或选择最优的模型,这就是策略。<br></p>
</div>
<div class="sect4">
<h5 id="_损失函数">1.2.2.1. 损失函数</h5>
<div class="paragraph">
<p>策略用来解决最优模型的选择问题,那么如何评价模型优劣,这就是损失函数或代价函数,下面是一些常见的损失函数:<br>
(1)0-1损失<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
L(Y|f(X))=\left\{\begin{matrix}
1,Y\neq f(X) & \\
0,Y=f(X)&
\end{matrix}\right.
\end{equation}</p>
</div>
<div class="paragraph">
<p>(2)平方损失<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
L(Y|f(X))=(Y-f(X))^{2}
\end{equation}</p>
</div>
<div class="paragraph">
<p>(3)绝对损失<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
L(Y|f(X))=\left |Y-f(X) \right |
\end{equation}</p>
</div>
<div class="paragraph">
<p>(4)对数损失<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
L(Y|f(X))=-log(P(Y|X)
\end{equation}</p>
</div>
<div class="paragraph">
<p>损失函数越小,模型就越好,理论上的最优模型应该是损失函数的期望值最小,而理论模型是关于联合分布下的平均损失,称为期望损失或风险损失,然而现实的问题是联合分布是未知的,如果已知也就不需要学习了。<br></p>
</div>
<div class="paragraph">
<p>所以机器学习采用的方法时是通过用<strong>训练数据集上的平均损失近似期望损失</strong>,训练集上的风险我们称为经验风险,根据大数定理,当训练样本数量趋近于无穷时,经验风险趋近于期望风险。<br></p>
</div>
<div class="paragraph">
<p>但是现实中的训练样本数量是有限的,甚至很小,所以直接使用经验风险估计期望风险常常不理想,需要对经验风险进行一定的矫正,这就关系到监督学习的两个基本策略:<strong>经验风险最小化和结构风险最小化</strong>。<br></p>
</div>
</div>
<div class="sect4">
<h5 id="_经验风险最小化">1.2.2.2. 经验风险最小化</h5>
<div class="paragraph">
<p>经验风险最小化的策略认为:经验风险最小化的模型是最优模型,根据这一策略,
按照经验风险最小化策略求最优模型就是求解最优化问题:<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
min\frac{1}{m}\sum_{i=1}^{m}L(y_{i},f(x_{i}))
\end{equation}</p>
</div>
<div class="paragraph">
<p>极大似然估计就是经验风险最小化的典型例子,当模型是条件概率,损失函数是对数损失函数时,经验风险最小化就等价于极大似然估计。<br></p>
</div>
<div class="paragraph">
<p>但是,当样本量较少时,经验风险最小化学习的效果未必很好,会产生过拟合的问题,结构风险最小化是为了防止过拟合而提出的策略。<br></p>
</div>
</div>
<div class="sect4">
<h5 id="_结构风险最小化">1.2.2.3. 结构风险最小化</h5>
<div class="paragraph">
<p>结构风险最小化等价于正则化,结构风险在经验风险上加上表示模型复杂度的正则化项或惩罚项,结构风险求解的最优化问题是:<br></p>
</div>
<div class="paragraph">
<p>\begin{equation}
min\frac{1}{m}\sum_{i=1}^{m}L(y_{i},f(x_{i}))+\lambda J(f)
\end{equation}</p>
</div>
<div class="paragraph">
<p>其中 \(J(f)\) 为模型复杂度,\(\lambda \geqslant 0\)是系数,用以权衡经验风险和模型复杂度。结构风险小需要经验风险和模型复杂度同时小,结构风险小的模型往往对未知的测试数据和已知的训练数据都有较好的预测.<br></p>
</div>
<div class="paragraph">
<p>比如,贝叶斯估计中的最大后验概率估计就是结构风险最小化的一个例子。<strong>当模型是条件概率分布、损失函数是对数损失函数、模型复杂度由模型的先验概率表示时,结构风险最小化就等价于最大后验概率估计</strong>。<br></p>
</div>
<div class="admonitionblock important">
<table>
<tr>
<td class="icon">
<i class="fa icon-important" title="Important"></i>
</td>
<td class="content">
<div class="title">经验风险最小化深度理解</div>
<div class="paragraph">
<p>模型是条件概率分布,优化目标可以表示为概率连乘的形势,如果损失函数是对数损失,即可以写成连加的形势,由于最大后验概率可以写成似然函数和先验概率分布的乘积,对数损失后,先验概率就变成似然函数连加后的一项,对比上面公式,先验概率就刚好等价于模型复杂度,因此这种情况下,结构风险最小化就等价于最大后验概率估计。<br></p>
</div>
<div class="ulist">
<ul>
<li>
<p>我们将会在一个独立的小节阐述如何用贝叶斯理论理解本章的概念</p>
</li>
</ul>
</div>
</td>
</tr>