-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunner.py
307 lines (267 loc) · 11.8 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
from .utils import remove_dir, load_task
import json
from .utils import send_prompt, DyGraphPrompt, DyGraphGenERCon
from tqdm import tqdm
import numpy as np
import pandas as pd
import time
from .utils.misc import TPMController
class Runner:
def __init__(self, args, try_all = False) -> None:
"""
A class that provides methods for running tasks and evaluating results.
Args:
args (object): An object containing the arguments for the Runner.
try_all (bool, optional): Whether to try running all tasks continuously. Defaults to False.
Attributes:
args (object): An object containing the arguments for the Runner.
try_all (bool): Whether to try running all tasks continuously.
"""
self.args = args
self.try_all = try_all
def check(self, task_folder):
"""
Check the status of tasks in a given folder.
Args:
task_folder (str): The path to the folder containing the tasks.
Returns:
int: The number of tasks that need to be run.
"""
args = self.args
model = args.model
files = json.load(open(os.path.join(task_folder, "prompt_files.json"), "r"))["files"]
finish = []
torun = []
sdict = {"num_edges":[], "num_nodes":[], "num_time":[]}
for i, folder_name in enumerate(files):
folder_path = os.path.join(task_folder, folder_name)
graph = json.load(open(os.path.join(folder_path, "graph.json")))
for k, v in sdict.items():
v.append(graph[k])
answer_path = os.path.join(folder_path, f"answer_{model}.json")
if os.path.exists(answer_path):
finish.append(i)
else:
torun.append(i)
print(f"Finish {len(finish)}, ToRun {len(torun)}")
print("".join(f"{k}:{np.mean(v):.2f}+-{np.std(v):.2f} \t" for k,v in sdict.items()))
return len(torun)
def generate_save(self, dir, T, N, p, seed, *targs ,**kwargs):
"""
Generates and saves dynamic graph data, QA data, and prompt-QA data.
Args:
dir (str): The directory where the data will be saved.
T (int): The time steps for the dynamic graph.
N (int): The number of nodes in the dynamic graph.
p (float): The probability of an edge being present in the dynamic graph.
seed (int): The seed for random number generation.
task (str): The task for which to generate the data.
*targs: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
str: The folder setting where the data is saved.
"""
folder_setting = f"{T}_{N}_{p}_{seed}"
args = self.args
task = args.task
# init
dygen = DyGraphGenERCon()
obj_task = load_task(task, args)
dygprompt = DyGraphPrompt(obj_task, args = args)
# generate prompt_qa
info = dygen.sample_dynamic_graph(T = T, N = N , p = p, seed = seed)
qa = obj_task.generate_qa(info, *targs, **kwargs)
prompt_qa = dygprompt.generate_prompt_qa(**qa)
# file paths
folder = os.path.join(dir, folder_setting)
os.makedirs(folder, exist_ok=True)
info_file = os.path.join(folder, f"graph.json")
qa_file = os.path.join(folder, f"qa.json")
prompt_qa_file = os.path.join(folder, f"prompt_qa.json")
# write files
json.dump(info, open(info_file, "w"))
json.dump(qa, open(qa_file, "w"))
json.dump(prompt_qa, open(prompt_qa_file, "w"), indent=4)
return folder_setting
# run
def gen(self, dir):
"""
Generate prompt files based on the given directory.
Args:
dir (str): The directory to save the generated prompt files.
Returns:
None
"""
print('generate prompt files for task', self.args.task, 'in', self.args.task_folder)
args = self.args
os.makedirs(dir, exist_ok=True)
json.dump(args.__dict__, open(os.path.join(dir, 'args.json'), "w"), indent = 4)
prompt_files = []
label = 0
task = args.task
for T in args.T:
for N in args.N:
for p in args.p:
seed = 0
pf_set = []
while len(pf_set) < args.num_seed:
# if True:
try:
folder_setting = self.generate_save(dir, T, N, p, seed, label = label)
pf_set.append(folder_setting)
label = not label
except Exception as e:
print(e)
seed +=1
prompt_files.extend(pf_set)
json.dump({"files": prompt_files}, open(os.path.join(dir, f"prompt_files.json"), "w"))
def run_one(self, task_folder):
args = self.args
model = args.model
con = TPMController(start_token = args.start_token)
files = json.load(open(os.path.join(task_folder, "prompt_files.json"), "r"))["files"]
with tqdm(files) as bar:
for folder_name in bar:
try:
folder_path = os.path.join(task_folder, folder_name)
file_path = os.path.join(folder_path, "prompt_qa.json")
answer_path = os.path.join(folder_path, f"answer_{model}.json")
prompt = json.load(open(file_path, "r"))['prompt']
if os.path.exists(answer_path):
continue
token = con.get_token()
bar.set_postfix(token = token)
answer = send_prompt(model, prompt, temperature = args.temperature, max_tokens = args.max_tokens)
con.time_token()
con.use_token(answer['total_tokens'])
json.dump(answer, open(answer_path, "w"))
except Exception as e:
print(e)
def run(self, task_folder):
print('get answers for task', self.args.task, 'in', self.args.task_folder)
if self.try_all:
while 1:
self.run_one(task_folder)
torun = self.check(task_folder)
if torun == 0:
break
print("Continue Try to Run")
time.sleep(5)
else:
self.run_one(task_folder)
def evaluate(self, task_folder):
args = self.args
model = args.model
task = args.task
obj_task = load_task(task, args)
files = json.load(open(os.path.join(task_folder, "prompt_files.json"), "r"))["files"]
metrics = []
total_tokens = []
prompt_tokens = []
completion_tokens = []
wrong_folders = []
fail_folders = []
num_times = []
num_edges = []
num_nodes = []
for folder_name in tqdm(files):
folder_path = os.path.join(task_folder, folder_name)
file_path = os.path.join(folder_path, "qa.json")
answer_path = os.path.join(folder_path, f"answer_{model}.json")
graph_path = os.path.join(folder_path, f"graph.json")
qa = json.load(open(file_path, "r"))
answer = json.load(open(answer_path, "r"))
graph = json.load(open(graph_path, "r"))
metric = obj_task.evaluate(qa, answer["content"])
metrics.append(metric)
if metric< 0:
fail_folders.append(folder_name)
if metric == 0:
wrong_folders.append(folder_name)
total_tokens.append(answer['total_tokens'])
prompt_tokens.append(answer['prompt_tokens'])
completion_tokens.append(answer["completion_tokens"])
num_times.append(graph['num_time'])
num_edges.append(graph['num_edges'])
num_nodes.append(graph['num_nodes'])
num_fail = len([m for m in metrics if m<0 ])
num_all = len(metrics)
average_acc = sum([m for m in metrics if m>=0])/num_all
fail_rate = num_fail / num_all
total_tokens = sum(total_tokens)
average_tokens = total_tokens / num_all
results = {
"fail_rate": fail_rate,
"average_acc": average_acc,
"average_tokens": average_tokens,
"total_tokens": total_tokens,
"average_num_times": sum(num_times)/num_all,
"average_num_edges": sum(num_edges)/num_all,
"average_num_nodes": sum(num_nodes)/num_all,
"metrics": metrics,
"total_tokens": total_tokens,
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"wrong_folders": wrong_folders,
"fail_folders": fail_folders,
}
json.dump(results, open(os.path.join(task_folder, f"results_{model}.json"), "w"), indent=4)
print(f"Task: {task}, Model: {model}")
print(f"Fail Rate: {fail_rate:.2f}, Average Acc: {average_acc:.4f}, Average Tokens: {average_tokens:.2f}, Total Tokens: {total_tokens}")
print(f"Num_time : {np.mean(num_times):.2f}+-{np.std(num_times):.2f} Num_edges : {np.mean(num_edges):.2f}+-{np.std(num_edges):.2f} Num Nodes : {np.mean(num_nodes):.2f}+-{np.std(num_nodes):.2f}")
def show(self, dir):
args = self.args
table = []
task = args.task
task_folder = args.task_folder
model = args.model
obj_task = load_task(task, args)
files = json.load(open(os.path.join(task_folder, "prompt_files.json"), "r"))["files"]
for folder_name in tqdm(files):
folder_path = os.path.join(task_folder, folder_name)
file_path = os.path.join(folder_path, "qa.json")
answer_path = os.path.join(folder_path, f"answer_{model}.json")
graph_path = os.path.join(folder_path, f"graph.json")
qa = json.load(open(file_path, "r"))
answer = json.load(open(answer_path, "r"))
graph = json.load(open(graph_path, "r"))
T, N, p = graph['T'], graph['N'], graph['p']
metric = obj_task.evaluate(qa, answer["content"])
# metric = max(metric, 0)
table.append([task, metric, T, N, p])
df = pd.DataFrame(table, columns= "task m T N p".split())
print(df)
TS = sorted(list(set(list(df['T'].values))))
NS = sorted(list(set(list(df['N'].values))))
PS = sorted(list(set(list(df['p'].values))))
for p in PS:
accs = []
for T in TS:
for N in NS:
acc = df.query(f'task == "{task}" and T == {T} and N == {N} and p == {p} ')['m'].to_numpy()
acc[acc<0] = 0
acc = acc.mean()
accs.append(acc)
accs = np.array(accs)
accs = accs.reshape(len(TS),len(NS))
df2 = pd.DataFrame(accs, columns = NS, index = TS)
print('task:', task, ' density:', p)
print( df2)
def execute(self, dir):
args = self.args
task_folder = args.task_folder
if args.t == "clear":
remove_dir(task_folder)
elif args.t == "gen":
self.gen(task_folder)
elif args.t == "run":
self.run(task_folder)
elif args.t == "eval":
self.evaluate(task_folder)
elif args.t == "check":
self.check(task_folder)
elif args.t == "show":
self.show(args.log_dir)
else:
raise NotImplementedError