https://leetcode.com/problems/smallest-range-ii/
我觉得这个 解答 很好. 一个突破点是对于-K/+K来说,我们可以对所有的元素统一减去K,那么这些选择就是是否+2K.
虽然这个解答很好,但总觉得这个方法不是特别显而易见的。这是一个贪心算法,但是需要证明。
Intuition: For each integer A[i], we may choose either x = -K or x = K. If we add K to all B[i], the result won't change. It's the same as: For each integer A[i], we may choose either x = 0 or x = 2 * K. Explanation: We sort the A first, and we choose to add x = 0 to all A[i]. Now we have res = A[n - 1] - A[0]. Starting from the smallest of A, we add 2 * K to A[i], hoping this process will reduce the difference. Update the new mx = max(mx, A[i] + 2 * K) Update the new mn = min(A[i + 1], A[0] + 2 * K) Update the res = min(res, mx - mn)
====================
试着用Java来实现这个功能
import java.util.*;
class Solution {
public int smallestRangeII(int[] A, int K) {
Arrays.sort(A);
int ans = A[A.length - 1] - A[0];
for (int i = 0; i < A.length - 1; i++) {
int minx = Math.min(A[0] + 2 * K, A[i + 1]);
int maxx = Math.max(A[i] + 2 * K, A[A.length - 1]);
ans = Math.min(ans, maxx - minx);
}
return ans;
}
}