https://www.tensorflow.org/install/install_linux
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu-installation
https://developer.nvidia.com/cudnn
pre-installation
- GPU支持CUDA
- Linux版本支持CUDA
- 安装了gcc
- 安装了linux头文件和开发包. `sudo apt-get install linux-headers-$(uname -r)`
https://developer.nvidia.com/cuda-downloads 选择下载安装包,以ubuntu使用网络安装为例
Installation Instructions:
- `sudo dpkg -i cuda-repo-ubuntu1604_9.1.85-1_amd64.deb`
- `sudo apt-key adv –fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub`
- `sudo apt-get update`
- `sudo apt-get install cuda`
安装完成后重启,在启动脚本里面添加
export PATH=/usr/local/cuda-9.1/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} #END_EXAMPLE 验证安装成功可以运行命令 root@testnn:~# nvidia-smi Thu Mar 22 09:54:25 2018 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 390.30 Driver Version: 390.30 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla P100-PCIE... Off | 00000000:00:08.0 Off | 0 | | N/A 31C P0 28W / 250W | 0MiB / 16280MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
可能现在TF只支持CUDA9.0, 所以安装9.1会出现链接错误找不到.so的问题。为了验证tensorflow的确使用了GPU,可以运行下面脚本
import tensorflow as tf sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
输出大概是下面这样的
2018-03-22 11:01:18.699187: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0 2018-03-22 11:01:18.699367: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 570 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:08.0, compute capability: 6.0) Device mapping: /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:08.0, compute capability: 6.0 2018-03-22 11:01:18.699531: I tensorflow/core/common_runtime/direct_session.cc:297] Device mapping: /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:08.0, compute capability: 6.0