forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovielens_main.py
115 lines (94 loc) · 3.99 KB
/
movielens_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train DNN on Kaggle movie dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app as absl_app
from absl import flags
import tensorflow as tf
from official.datasets import movielens
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.wide_deep import movielens_dataset
from official.wide_deep import wide_deep_run_loop
def define_movie_flags():
"""Define flags for movie dataset training."""
wide_deep_run_loop.define_wide_deep_flags()
flags.DEFINE_enum(
name="dataset", default=movielens.ML_1M,
enum_values=movielens.DATASETS, case_sensitive=False,
help=flags_core.help_wrap("Dataset to be trained and evaluated."))
flags.adopt_module_key_flags(wide_deep_run_loop)
flags_core.set_defaults(data_dir="/tmp/movielens-data/",
model_dir='/tmp/movie_model',
model_type="deep",
train_epochs=50,
epochs_between_evals=5,
inter_op_parallelism_threads=0,
intra_op_parallelism_threads=0,
batch_size=256)
@flags.validator("stop_threshold",
message="stop_threshold not supported for movielens model")
def _no_stop(stop_threshold):
return stop_threshold is None
def build_estimator(model_dir, model_type, model_column_fn, inter_op, intra_op):
"""Build an estimator appropriate for the given model type."""
if model_type != "deep":
raise NotImplementedError("movie dataset only supports `deep` model_type")
_, deep_columns = model_column_fn()
hidden_units = [256, 256, 256, 128]
run_config = tf.estimator.RunConfig().replace(
session_config=tf.ConfigProto(device_count={'GPU': 0},
inter_op_parallelism_threads=inter_op,
intra_op_parallelism_threads=intra_op))
return tf.estimator.DNNRegressor(
model_dir=model_dir,
feature_columns=deep_columns,
hidden_units=hidden_units,
optimizer=tf.train.AdamOptimizer(),
activation_fn=tf.nn.sigmoid,
dropout=0.3,
loss_reduction=tf.losses.Reduction.MEAN)
def run_movie(flags_obj):
"""Construct all necessary functions and call run_loop.
Args:
flags_obj: Object containing user specified flags.
"""
if flags_obj.download_if_missing:
movielens.download(dataset=flags_obj.dataset, data_dir=flags_obj.data_dir)
train_input_fn, eval_input_fn, model_column_fn = \
movielens_dataset.construct_input_fns(
dataset=flags_obj.dataset, data_dir=flags_obj.data_dir,
batch_size=flags_obj.batch_size, repeat=flags_obj.epochs_between_evals)
tensors_to_log = {
'loss': '{loss_prefix}head/weighted_loss/value'
}
wide_deep_run_loop.run_loop(
name="MovieLens", train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
model_column_fn=model_column_fn,
build_estimator_fn=build_estimator,
flags_obj=flags_obj,
tensors_to_log=tensors_to_log,
early_stop=False)
def main(_):
with logger.benchmark_context(flags.FLAGS):
run_movie(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_movie_flags()
absl_app.run(main)