forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovielens_dataset.py
163 lines (127 loc) · 5.82 KB
/
movielens_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Prepare MovieLens dataset for wide-deep."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
# pylint: disable=wrong-import-order
from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf
# pylint: enable=wrong-import-order
from official.datasets import movielens
from official.utils.data import file_io
from official.utils.flags import core as flags_core
_BUFFER_SUBDIR = "wide_deep_buffer"
_FEATURE_MAP = {
movielens.USER_COLUMN: tf.FixedLenFeature([1], dtype=tf.int64),
movielens.ITEM_COLUMN: tf.FixedLenFeature([1], dtype=tf.int64),
movielens.TIMESTAMP_COLUMN: tf.FixedLenFeature([1], dtype=tf.int64),
movielens.GENRE_COLUMN: tf.FixedLenFeature(
[movielens.N_GENRE], dtype=tf.int64),
movielens.RATING_COLUMN: tf.FixedLenFeature([1], dtype=tf.float32),
}
_BUFFER_SIZE = {
movielens.ML_1M: {"train": 107978119, "eval": 26994538},
movielens.ML_20M: {"train": 2175203810, "eval": 543802008}
}
_USER_EMBEDDING_DIM = 16
_ITEM_EMBEDDING_DIM = 64
def build_model_columns(dataset):
"""Builds a set of wide and deep feature columns."""
user_id = tf.feature_column.categorical_column_with_vocabulary_list(
movielens.USER_COLUMN, range(1, movielens.NUM_USER_IDS[dataset]))
user_embedding = tf.feature_column.embedding_column(
user_id, _USER_EMBEDDING_DIM, max_norm=np.sqrt(_USER_EMBEDDING_DIM))
item_id = tf.feature_column.categorical_column_with_vocabulary_list(
movielens.ITEM_COLUMN, range(1, movielens.NUM_ITEM_IDS))
item_embedding = tf.feature_column.embedding_column(
item_id, _ITEM_EMBEDDING_DIM, max_norm=np.sqrt(_ITEM_EMBEDDING_DIM))
time = tf.feature_column.numeric_column(movielens.TIMESTAMP_COLUMN)
genres = tf.feature_column.numeric_column(
movielens.GENRE_COLUMN, shape=(movielens.N_GENRE,), dtype=tf.uint8)
deep_columns = [user_embedding, item_embedding, time, genres]
wide_columns = []
return wide_columns, deep_columns
def _deserialize(examples_serialized):
features = tf.parse_example(examples_serialized, _FEATURE_MAP)
return features, features[movielens.RATING_COLUMN] / movielens.MAX_RATING
def _buffer_path(data_dir, dataset, name):
return os.path.join(data_dir, _BUFFER_SUBDIR,
"{}_{}_buffer".format(dataset, name))
def _df_to_input_fn(df, name, dataset, data_dir, batch_size, repeat, shuffle):
"""Serialize a dataframe and write it to a buffer file."""
buffer_path = _buffer_path(data_dir, dataset, name)
expected_size = _BUFFER_SIZE[dataset].get(name)
file_io.write_to_buffer(
dataframe=df, buffer_path=buffer_path,
columns=list(_FEATURE_MAP.keys()), expected_size=expected_size)
def input_fn():
dataset = tf.data.TFRecordDataset(buffer_path)
# batch comes before map because map can deserialize multiple examples.
dataset = dataset.batch(batch_size)
dataset = dataset.map(_deserialize, num_parallel_calls=16)
if shuffle:
dataset = dataset.shuffle(shuffle)
dataset = dataset.repeat(repeat)
return dataset.prefetch(1)
return input_fn
def _check_buffers(data_dir, dataset):
train_path = os.path.join(data_dir, _BUFFER_SUBDIR,
"{}_{}_buffer".format(dataset, "train"))
eval_path = os.path.join(data_dir, _BUFFER_SUBDIR,
"{}_{}_buffer".format(dataset, "eval"))
if not tf.gfile.Exists(train_path) or not tf.gfile.Exists(eval_path):
return False
return all([
tf.gfile.Stat(_buffer_path(data_dir, dataset, "train")).length ==
_BUFFER_SIZE[dataset]["train"],
tf.gfile.Stat(_buffer_path(data_dir, dataset, "eval")).length ==
_BUFFER_SIZE[dataset]["eval"],
])
def construct_input_fns(dataset, data_dir, batch_size=16, repeat=1):
"""Construct train and test input functions, as well as the column fn."""
if _check_buffers(data_dir, dataset):
train_df, eval_df = None, None
else:
df = movielens.csv_to_joint_dataframe(dataset=dataset, data_dir=data_dir)
df = movielens.integerize_genres(dataframe=df)
df = df.drop(columns=[movielens.TITLE_COLUMN])
train_df = df.sample(frac=0.8, random_state=0)
eval_df = df.drop(train_df.index)
train_df = train_df.reset_index(drop=True)
eval_df = eval_df.reset_index(drop=True)
train_input_fn = _df_to_input_fn(
df=train_df, name="train", dataset=dataset, data_dir=data_dir,
batch_size=batch_size, repeat=repeat,
shuffle=movielens.NUM_RATINGS[dataset])
eval_input_fn = _df_to_input_fn(
df=eval_df, name="eval", dataset=dataset, data_dir=data_dir,
batch_size=batch_size, repeat=repeat, shuffle=None)
model_column_fn = functools.partial(build_model_columns, dataset=dataset)
train_input_fn()
return train_input_fn, eval_input_fn, model_column_fn
def main(_):
movielens.download(dataset=flags.FLAGS.dataset, data_dir=flags.FLAGS.data_dir)
construct_input_fns(flags.FLAGS.dataset, flags.FLAGS.data_dir)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
movielens.define_data_download_flags()
flags.adopt_module_key_flags(movielens)
flags_core.set_defaults(dataset="ml-1m")
absl_app.run(main)