forked from carpentries-incubator/deep-learning-intro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimages.html
586 lines (551 loc) · 42.4 KB
/
images.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
<!DOCTYPE html>
<!-- START: inst/pkgdown/templates/layout.html --><!-- Generated by pkgdown: do not edit by hand --><html lang="en" data-bs-theme="auto">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<title>Introduction to deep learning: All Images</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<script src="assets/themetoggle.js"></script><link rel="stylesheet" type="text/css" href="assets/styles.css">
<script src="assets/scripts.js" type="text/javascript"></script><!-- mathjax --><script type="text/x-mathjax-config">
MathJax.Hub.Config({
config: ["MMLorHTML.js"],
jax: ["input/TeX","input/MathML","output/HTML-CSS","output/NativeMML", "output/PreviewHTML"],
extensions: ["tex2jax.js","mml2jax.js","MathMenu.js","MathZoom.js", "fast-preview.js", "AssistiveMML.js", "a11y/accessibility-menu.js"],
TeX: {
extensions: ["AMSmath.js","AMSsymbols.js","noErrors.js","noUndefined.js"]
},
tex2jax: {
inlineMath: [['\\(', '\\)']],
displayMath: [ ['$$','$$'], ['\\[', '\\]'] ],
processEscapes: true
}
});
</script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><!-- Responsive Favicon for The Carpentries --><link rel="apple-touch-icon" sizes="180x180" href="favicons/incubator/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="favicons/incubator/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="favicons/incubator/favicon-16x16.png">
<link rel="manifest" href="favicons/incubator/site.webmanifest">
<link rel="mask-icon" href="favicons/incubator/safari-pinned-tab.svg" color="#5bbad5">
<meta name="msapplication-TileColor" content="#da532c">
<meta name="theme-color" media="(prefers-color-scheme: light)" content="white">
<meta name="theme-color" media="(prefers-color-scheme: dark)" content="black">
</head>
<body>
<header id="top" class="navbar navbar-expand-md top-nav incubator"><svg xmlns="http://www.w3.org/2000/svg" class="d-none"><symbol id="check2" viewbox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"></path></symbol><symbol id="circle-half" viewbox="0 0 16 16"><path d="M8 15A7 7 0 1 0 8 1v14zm0 1A8 8 0 1 1 8 0a8 8 0 0 1 0 16z"></path></symbol><symbol id="moon-stars-fill" viewbox="0 0 16 16"><path d="M6 .278a.768.768 0 0 1 .08.858 7.208 7.208 0 0 0-.878 3.46c0 4.021 3.278 7.277 7.318 7.277.527 0 1.04-.055 1.533-.16a.787.787 0 0 1 .81.316.733.733 0 0 1-.031.893A8.349 8.349 0 0 1 8.344 16C3.734 16 0 12.286 0 7.71 0 4.266 2.114 1.312 5.124.06A.752.752 0 0 1 6 .278z"></path><path d="M10.794 3.148a.217.217 0 0 1 .412 0l.387 1.162c.173.518.579.924 1.097 1.097l1.162.387a.217.217 0 0 1 0 .412l-1.162.387a1.734 1.734 0 0 0-1.097 1.097l-.387 1.162a.217.217 0 0 1-.412 0l-.387-1.162A1.734 1.734 0 0 0 9.31 6.593l-1.162-.387a.217.217 0 0 1 0-.412l1.162-.387a1.734 1.734 0 0 0 1.097-1.097l.387-1.162zM13.863.099a.145.145 0 0 1 .274 0l.258.774c.115.346.386.617.732.732l.774.258a.145.145 0 0 1 0 .274l-.774.258a1.156 1.156 0 0 0-.732.732l-.258.774a.145.145 0 0 1-.274 0l-.258-.774a1.156 1.156 0 0 0-.732-.732l-.774-.258a.145.145 0 0 1 0-.274l.774-.258c.346-.115.617-.386.732-.732L13.863.1z"></path></symbol><symbol id="sun-fill" viewbox="0 0 16 16"><path d="M8 12a4 4 0 1 0 0-8 4 4 0 0 0 0 8zM8 0a.5.5 0 0 1 .5.5v2a.5.5 0 0 1-1 0v-2A.5.5 0 0 1 8 0zm0 13a.5.5 0 0 1 .5.5v2a.5.5 0 0 1-1 0v-2A.5.5 0 0 1 8 13zm8-5a.5.5 0 0 1-.5.5h-2a.5.5 0 0 1 0-1h2a.5.5 0 0 1 .5.5zM3 8a.5.5 0 0 1-.5.5h-2a.5.5 0 0 1 0-1h2A.5.5 0 0 1 3 8zm10.657-5.657a.5.5 0 0 1 0 .707l-1.414 1.415a.5.5 0 1 1-.707-.708l1.414-1.414a.5.5 0 0 1 .707 0zm-9.193 9.193a.5.5 0 0 1 0 .707L3.05 13.657a.5.5 0 0 1-.707-.707l1.414-1.414a.5.5 0 0 1 .707 0zm9.193 2.121a.5.5 0 0 1-.707 0l-1.414-1.414a.5.5 0 0 1 .707-.707l1.414 1.414a.5.5 0 0 1 0 .707zM4.464 4.465a.5.5 0 0 1-.707 0L2.343 3.05a.5.5 0 1 1 .707-.707l1.414 1.414a.5.5 0 0 1 0 .708z"></path></symbol></svg><a class="visually-hidden-focusable skip-link" href="#main-content">Skip to main content</a>
<div class="container-fluid top-nav-container">
<div class="col-md-8">
<div class="large-logo">
<img id="incubator-logo" alt="Carpentries Incubator" src="assets/images/incubator-logo.svg">
</div>
</div>
<div class="selector-container">
<div id="theme-selector">
<li class="nav-item dropdown" id="theme-button-list">
<button class="btn btn-link nav-link px-0 px-lg-2 dropdown-toggle d-flex align-items-center" id="bd-theme" type="button" aria-expanded="false" data-bs-toggle="dropdown" data-bs-display="static" aria-label="Toggle theme (auto)">
<svg class="bi my-1 theme-icon-active"><use href="#circle-half"></use></svg><i data-feather="chevron-down"></i>
</button>
<ul class="dropdown-menu dropdown-menu-end" aria-labelledby="bd-theme-text">
<li>
<button type="button" class="btn dropdown-item d-flex align-items-center" data-bs-theme-value="light" aria-pressed="false">
<svg class="bi me-2 theme-icon"><use href="#sun-fill"></use></svg>
Light
<svg class="bi ms-auto d-none"><use href="#check2"></use></svg></button>
</li>
<li>
<button type="button" class="btn dropdown-item d-flex align-items-center" data-bs-theme-value="dark" aria-pressed="false">
<svg class="bi me-2 theme-icon"><use href="#moon-stars-fill"></use></svg>
Dark
<svg class="bi ms-auto d-none"><use href="#check2"></use></svg></button>
</li>
<li>
<button type="button" class="btn dropdown-item d-flex align-items-center active" data-bs-theme-value="auto" aria-pressed="true">
<svg class="bi me-2 theme-icon"><use href="#circle-half"></use></svg>
Auto
<svg class="bi ms-auto d-none"><use href="#check2"></use></svg></button>
</li>
</ul>
</li>
</div>
<div class="dropdown" id="instructor-dropdown">
<button class="btn btn-secondary dropdown-toggle bordered-button" type="button" id="dropdownMenu1" data-bs-toggle="dropdown" aria-expanded="false">
<i aria-hidden="true" class="icon" data-feather="eye"></i> Learner View <i data-feather="chevron-down"></i>
</button>
<ul class="dropdown-menu" aria-labelledby="dropdownMenu1">
<li><button class="dropdown-item" type="button" onclick="window.location.href='instructor/images.html';">Instructor View</button></li>
</ul>
</div>
</div>
</div>
<hr></header><nav class="navbar navbar-expand-xl bottom-nav incubator" aria-label="Main Navigation"><div class="container-fluid nav-container">
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle Navigation">
<span class="navbar-toggler-icon"></span>
<span class="menu-title">Menu</span>
</button>
<div class="nav-logo">
<img class="small-logo" alt="Carpentries Incubator" src="assets/images/incubator-logo-sm.svg">
</div>
<div class="lesson-title-md">
Introduction to deep learning
</div>
<div class="search-icon-sm">
<!-- TODO: do not show until we have search
<i role="img" aria-label="Search the All In One page" data-feather="search"></i>
-->
</div>
<div class="desktop-nav">
<ul class="navbar-nav me-auto mb-2 mb-lg-0">
<li class="nav-item">
<span class="lesson-title">
Introduction to deep learning
</span>
</li>
<li class="nav-item">
<a class="nav-link" href="key-points.html">Key Points</a>
</li>
<li class="nav-item">
<a class="nav-link" href="reference.html#glossary">Glossary</a>
</li>
<li class="nav-item">
<a class="nav-link" href="profiles.html">Learner Profiles</a>
</li>
<li class="nav-item dropdown">
<button class="nav-link dropdown-toggle" id="navbarDropdown" data-bs-toggle="dropdown" aria-expanded="false">
More <i data-feather="chevron-down"></i>
</button>
<ul class="dropdown-menu" aria-labelledby="navbarDropdown">
<li><a class="dropdown-item" href="reference.html">Reference</a></li>
</ul>
</li>
</ul>
</div>
<!--
<form class="d-flex col-md-2 search-form">
<fieldset disabled>
<input class="form-control me-2 searchbox" type="search" placeholder="" aria-label="">
<button class="btn btn-outline-success tablet-search-button" type="submit">
<i class="search-icon" data-feather="search" role="img" aria-label="Search the All In One page"></i>
</button>
</fieldset>
</form>
-->
<a id="search-button" class="btn btn-primary" href="aio.html" role="button" aria-label="Search the All In One page">Search the All In One page</a>
</div>
<!--/div.container-fluid -->
</nav><div class="col-md-12 mobile-title">
Introduction to deep learning
</div>
<aside class="col-md-12 lesson-progress"><div style="width: %" class="percentage">
%
</div>
<div class="progress incubator">
<div class="progress-bar incubator" role="progressbar" style="width: %" aria-valuenow="" aria-label="Lesson Progress" aria-valuemin="0" aria-valuemax="100">
</div>
</div>
</aside><div class="container">
<div class="row">
<!-- START: inst/pkgdown/templates/navbar.html -->
<div id="sidebar-col" class="col-lg-4">
<div id="sidebar" class="sidebar">
<nav aria-labelledby="flush-headingEleven"><button role="button" aria-label="close menu" alt="close menu" aria-expanded="true" aria-controls="sidebar" class="collapse-toggle" data-collapse="Collapse " data-episodes="Episodes ">
<i class="search-icon" data-feather="x" role="img"></i>
</button>
<div class="sidebar-inner">
<div class="row mobile-row" id="theme-row-mobile">
<div class="col" id="theme-selector">
<li class="nav-item dropdown" id="theme-button-list">
<button class="btn btn-link nav-link px-0 px-lg-2 dropdown-toggle d-flex align-items-center" id="bd-theme" type="button" aria-expanded="false" data-bs-toggle="dropdown" data-bs-display="static" aria-label="Toggle theme (auto)">
<svg class="bi my-1 theme-icon-active"><use href="#circle-half"></use></svg><span class="d-lg-none ms-1" id="bd-theme-text">Toggle Theme</span>
</button>
<ul class="dropdown-menu dropdown-menu-right" aria-labelledby="bd-theme-text">
<li>
<button type="button" class="btn dropdown-item d-flex align-items-center" data-bs-theme-value="light" aria-pressed="false">
<svg class="bi me-2 theme-icon"><use href="#sun-fill"></use></svg>
Light
<svg class="bi ms-auto d-none"><use href="#check2"></use></svg></button>
</li>
<li>
<button type="button" class="btn dropdown-item d-flex align-items-center" data-bs-theme-value="dark" aria-pressed="false">
<svg class="bi me-2 theme-icon"><use href="#moon-stars-fill"></use></svg>
Dark
<svg class="bi ms-auto d-none"><use href="#check2"></use></svg></button>
</li>
<li>
<button type="button" class="btn dropdown-item d-flex align-items-center active" data-bs-theme-value="auto" aria-pressed="true">
<svg class="bi me-2 theme-icon"><use href="#circle-half"></use></svg>
Auto
<svg class="bi ms-auto d-none"><use href="#check2"></use></svg></button>
</li>
</ul>
</li>
</div>
</div>
<div class="row mobile-row">
<div class="col">
<div class="sidenav-view-selector">
<div class="accordion accordion-flush" id="accordionFlush9">
<div class="accordion-item">
<h2 class="accordion-header" id="flush-headingNine">
<button class="accordion-button collapsed" id="instructor" type="button" data-bs-toggle="collapse" data-bs-target="#flush-collapseNine" aria-expanded="false" aria-controls="flush-collapseNine">
<i id="eye" aria-hidden="true" class="icon" data-feather="eye"></i> Learner View
</button>
</h2>
<div id="flush-collapseNine" class="accordion-collapse collapse" aria-labelledby="flush-headingNine" data-bs-parent="#accordionFlush2">
<div class="accordion-body">
<a href="instructor/images.html">Instructor View</a>
</div>
</div>
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
</div>
<!--div.sidenav-view-selector -->
</div>
<!--/div.col -->
<hr>
</div>
<!--/div.mobile-row -->
<div class="accordion accordion-flush" id="accordionFlush11">
<div class="accordion-item">
<button id="chapters" class="accordion-button show" type="button" data-bs-toggle="collapse" data-bs-target="#flush-collapseEleven" aria-expanded="false" aria-controls="flush-collapseEleven">
<h2 class="accordion-header chapters" id="flush-headingEleven">
EPISODES
</h2>
</button>
<div id="flush-collapseEleven" class="accordion-collapse show collapse" aria-labelledby="flush-headingEleven" data-bs-parent="#accordionFlush11">
<div class="accordion-body">
<div class="accordion accordion-flush" id="accordionFlush1">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading1">
<a href="index.html">Summary and Setup</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
<div class="accordion accordion-flush" id="accordionFlush2">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading2">
<a href="1-introduction.html">1. Introduction</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
<div class="accordion accordion-flush" id="accordionFlush3">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading3">
<a href="2-keras.html">2. Classification by a neural network using Keras</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
<div class="accordion accordion-flush" id="accordionFlush4">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading4">
<a href="3-monitor-the-model.html">3. Monitor the training process</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
<div class="accordion accordion-flush" id="accordionFlush5">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading5">
<a href="4-advanced-layer-types.html">4. Advanced layer types</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
<div class="accordion accordion-flush" id="accordionFlush6">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading6">
<a href="5-transfer-learning.html">5. Transfer learning</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
<div class="accordion accordion-flush" id="accordionFlush7">
<div class="accordion-item">
<div class="accordion-header" id="flush-heading7">
<a href="6-outlook.html">6. Outlook</a>
</div>
<!--/div.accordion-header-->
</div>
<!--/div.accordion-item-->
</div>
<!--/div.accordion-flush-->
</div>
</div>
</div>
<hr class="half-width">
<div class="accordion accordion-flush lesson-resources" id="accordionFlush12">
<div class="accordion-item">
<h2 class="accordion-header" id="flush-headingTwelve">
<button class="accordion-button collapsed" id="lesson-resources" type="button" data-bs-toggle="collapse" data-bs-target="#flush-collapseTwelve" aria-expanded="false" aria-controls="flush-collapseTwelve">
RESOURCES
</button>
</h2>
<div id="flush-collapseTwelve" class="accordion-collapse collapse" aria-labelledby="flush-headingTwelve" data-bs-parent="#accordionFlush12">
<div class="accordion-body">
<ul>
<li>
<a href="key-points.html">Key Points</a>
</li>
<li>
<a href="reference.html#glossary">Glossary</a>
</li>
<li>
<a href="profiles.html">Learner Profiles</a>
</li>
<li><a href="reference.html">Reference</a></li>
</ul>
</div>
</div>
</div>
</div>
<hr class="half-width lesson-resources">
<a href="aio.html">See all in one page</a>
<hr class="d-none d-sm-block d-md-none">
<div class="d-grid gap-1">
</div>
</div>
<!-- /div.accordion -->
</div>
<!-- /div.sidebar-inner -->
</nav>
</div>
<!-- /div.sidebar -->
</div>
<!-- /div.sidebar-col -->
<!-- END: inst/pkgdown/templates/navbar.html-->
<!-- START: inst/pkgdown/templates/content-extra.html -->
<div class="col-xl-8 col-lg-12 primary-content">
<main id="main-content" class="main-content"><div class="container lesson-content">
<section id="1-introduction"><h2 class="section-heading"><a href="1-introduction.html">Introduction</a></h2>
<hr class="half-width">
<h3 id="1-introduction-figure-1">Figure 1</h3>
<p aria-hidden="true">Image 1 of 1: ‘An infographic showing the relation of artificial intelligence, machine learning, and deep learning. Deep learning is a specific subset of machine learning algorithms. Machine learning is one of the approaches to artificial intelligence.’</p>
<figure><img src="fig/01_AI_ML_DL_differences.jpg" style="width:60.0%" alt="An infographic showing the relation of artificial intelligence, machine learning, and deep learning. Deep learning is a specific subset of machine learning algorithms. Machine learning is one of the approaches to artificial intelligence." class="figure mx-auto d-block"></figure><hr>
<h3 id="1-introduction-figure-2">Figure 2</h3>
<p aria-hidden="true">Image 1 of 1: ‘A diagram of a single artificial neuron combining inputs and weights using an activation function.’</p>
<figure><img src="fig/01_neuron.png" alt="A diagram of a single artificial neuron combining inputs and weights using an activation function." width="600" class="figure mx-auto d-block"></figure><hr>
<h3 id="1-introduction-figure-3">Figure 3</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of the sigmoid function’</p>
<p><img src="fig/01_sigmoid.svg" style="width:70.0%" alt="Plot of the sigmoid function" align="left" class="figure"><br clear="all"></p>
<hr>
<h3 id="1-introduction-figure-4">Figure 4</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of the ReLU function’</p>
<p><img src="fig/01_relu.svg" style="width:70.0%" alt="Plot of the ReLU function" align="left" class="figure"><br clear="all"></p>
<hr>
<h3 id="1-introduction-figure-5">Figure 5</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of the Identity function’</p>
<p><img src="fig/01_identity_function.svg" style="width:70.0%" alt="Plot of the Identity function" align="left" class="figure"><br clear="all"></p>
<hr>
<h3 id="1-introduction-figure-6">Figure 6</h3>
<p aria-hidden="true">Image 1 of 1: ‘A diagram of a three layer neural network with an input layer, one hidden layer, and an output layer.’</p>
<figure><img src="fig/01_neural_net.png" alt="A diagram of a three layer neural network with an input layer, one hidden layer, and an output layer." class="figure mx-auto d-block"><div class="figcaption">Image credit: Glosser.ca, CC BY-SA 3.0 <a href="https://creativecommons.org/licenses/by-sa/3.0" class="external-link uri">https://creativecommons.org/licenses/by-sa/3.0</a>, via
Wikimedia Commons, <a href="https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg" class="external-link">original
source</a>
</div>
</figure><hr>
<h3 id="1-introduction-figure-7">Figure 7</h3>
<p aria-hidden="true">Image 1 of 1: ‘A diagram of a neural network with 2 inputs, 2 hidden layer neurons, and 1 output.’</p>
<li>
<span class="math inline">\(b_i\)</span> denotes the bias term of
that specific neuron <img src="fig/01_xor_exercise.png" alt="A diagram of a neural network with 2 inputs, 2 hidden layer neurons, and 1 output." width="400" class="figure">
</li>
<hr>
<h3 id="1-introduction-figure-8">Figure 8</h3>
<p aria-hidden="true">Image 1 of 1: ‘An example of a deep neural network’</p>
<figure><img src="fig/01_deep_network.png" alt="An example of a deep neural network" class="figure mx-auto d-block"><div class="figcaption">
<strong>A visual representation of a deep neural
network used to detect pedestrians in images.</strong> There are too
many neurons to draw all of them, so each layer is represented by a
panel, with values indicating how many neurons are in each dimension of
the layer. Note that this model has 3-dimensional layers instead of the
1-dimensional layers that we introduced before. The input (left most)
layer of the network is an image of 448 x 448 pixels and 3 RGB channels.
The final (right most) layer of the network outputs a zero or one to
determine if the input data belongs to the class of data we are
interested in. The output of the previous layer is the input to the next
layer. Note that the color coding refers to different layer types that
will be introduced one by one as we proceed in this lesson.</div>
</figure><hr>
<h3 id="1-introduction-figure-9">Figure 9</h3>
<p aria-hidden="true">Image 1 of 1: ‘Line plot comparing squared error loss function with the Huber loss function where delta = 1, showing the cost of prediction error of both functions equal where y_true - y_pred is between -1 and 1, then rising linearly with the Huber loss function as y_true diverges further from y_pred, as opposed to expontentially for the squared error function.’</p>
<figure><img src="fig/01_huber_loss.png" alt="Line plot comparing squared error loss function with the Huber loss function where delta = 1, showing the cost of prediction error of both functions equal where y_true - y_pred is between -1 and 1, then rising linearly with the Huber loss function as y_true diverges further from y_pred, as opposed to expontentially for the squared error function." width="400" class="figure mx-auto d-block"></figure><hr>
<h3 id="1-introduction-figure-10">Figure 10</h3>
<p aria-hidden="true">Image 1 of 1: ‘A graph showing an exponentially decreasing loss over the first 1500 epochs of training an example network.’</p>
<figure><img src="fig/training-0_to_1500.svg" alt="A graph showing an exponentially decreasing loss over the first 1500 epochs of training an example network." class="figure mx-auto d-block"></figure><hr></section><section id="2-keras"><h2 class="section-heading"><a href="2-keras.html">Classification by a neural network using Keras</a></h2>
<hr class="half-width">
<h3 id="2-keras-figure-1">Figure 1</h3>
<p aria-hidden="true">Image 1 of 1: ‘Illustration of the three species of penguins found in the Palmer Archipelago, Antarctica: Chinstrap, Gentoo and Adele’</p>
<figure><img src="fig/palmer_penguins.png" title="Palmer Penguins" alt="Illustration of the three species of penguins found in the Palmer Archipelago, Antarctica: Chinstrap, Gentoo and Adele" class="figure mx-auto d-block"><div class="figcaption"><em>Artwork by <span class="citation">@allison_horst</span></em></div>
</figure><hr>
<h3 id="2-keras-figure-2">Figure 2</h3>
<p aria-hidden="true">Image 1 of 1: ‘Illustration of how the beak dimensions were measured. In the raw data, bill dimensions are recorded as "culmen length" and "culmen depth". The culmen is the dorsal ridge atop the bill.’</p>
<figure><img src="fig/culmen_depth.png" title="Culmen Depth" alt='Illustration of how the beak dimensions were measured. In the raw data, bill dimensions are recorded as "culmen length" and "culmen depth". The culmen is the dorsal ridge atop the bill.' class="figure mx-auto d-block"><div class="figcaption"><em>Artwork by <span class="citation">@allison_horst</span></em></div>
</figure><hr>
<h3 id="2-keras-figure-3">Figure 3</h3>
<p aria-hidden="true">Image 1 of 1: ‘Grid of scatter plots and histograms comparing observed values of the four physicial attributes (features) measured in the penguins sampled. Scatter plots illustrate the distribution of values observed for each pair of features. On the diagonal, where one feature would be compared with itself, histograms are displayed that show the distribution of values observed for that feature, coloured according to the species of the individual sampled. The pair plot shows distinct but overlapping clusters of data points representing the different species, with no pair of features providing a clean separation of clusters on its own.’</p>
<figure><img src="fig/pairplot.png" title="Pair Plot" alt="Grid of scatter plots and histograms comparing observed values of the four physicial attributes (features) measured in the penguins sampled. Scatter plots illustrate the distribution of values observed for each pair of features. On the diagonal, where one feature would be compared with itself, histograms are displayed that show the distribution of values observed for that feature, coloured according to the species of the individual sampled. The pair plot shows distinct but overlapping clusters of data points representing the different species, with no pair of features providing a clean separation of clusters on its own." class="figure mx-auto d-block"></figure><hr>
<h3 id="2-keras-figure-4">Figure 4</h3>
<p aria-hidden="true">Image 1 of 1: ‘Grid of scatter plots and histograms comparing observed values of the four physicial attributes (features) measured in the penguins sampled, with data points coloured according to the sex of the individual sampled. The pair plot shows similarly-shaped distribution of values observed for each feature in male and female penguins, with the distribution of measurements for females skewed towards smaller values.’</p>
<figure><img src="fig/02_sex_pairplot.png" title="Pair plot grouped by sex" alt="Grid of scatter plots and histograms comparing observed values of the four physicial attributes (features) measured in the penguins sampled, with data points coloured according to the sex of the individual sampled. The pair plot shows similarly-shaped distribution of values observed for each feature in male and female penguins, with the distribution of measurements for females skewed towards smaller values." class="figure mx-auto d-block"></figure><hr>
<h3 id="2-keras-figure-5">Figure 5</h3>
<p aria-hidden="true">Image 1 of 1: ‘Training loss curve of the neural network training which depicts exponential decrease in loss before a plateau from ~10 epochs’</p>
<figure><img src="fig/02_training_curve.png" title="Training Curve" alt="Training loss curve of the neural network training which depicts exponential decrease in loss before a plateau from ~10 epochs" class="figure mx-auto d-block"></figure><hr>
<h3 id="2-keras-figure-6">Figure 6</h3>
<p aria-hidden="true">Image 1 of 1: ‘Very jittery training curve with the loss value jumping back and forth between 2 and 4. The range of the y-axis is from 2 to 4, whereas in the previous training curve it was from 0 to 2. The loss seems to decrease a litle bit, but not as much as compared to the previous plot where it dropped to almost 0. The minimum loss in the end is somewhere around 2.’</p>
<li>(optional) Something went wrong here during training. What could be
the problem, and how do you see that in the training curve? Also compare
the range on the y-axis with the previous training curve. <img src="fig/02_bad_training_history_1.png" title="Training Curve Gone Wrong" alt="Very jittery training curve with the loss value jumping back and forth between 2 and 4. The range of the y-axis is from 2 to 4, whereas in the previous training curve it was from 0 to 2. The loss seems to decrease a litle bit, but not as much as compared to the previous plot where it dropped to almost 0. The minimum loss in the end is somewhere around 2." class="figure">
</li>
<hr>
<h3 id="2-keras-figure-7">Figure 7</h3>
<p aria-hidden="true">Image 1 of 1: ‘Confusion matrix of the test set with high accuracy for Adelie and Gentoo classification and no correctly predicted Chinstrap’</p>
<figure><img src="fig/confusion_matrix.png" title="Confusion Matrix" alt="Confusion matrix of the test set with high accuracy for Adelie and Gentoo classification and no correctly predicted Chinstrap" class="figure mx-auto d-block"></figure><hr></section><section id="3-monitor-the-model"><h2 class="section-heading"><a href="3-monitor-the-model.html">Monitor the training process</a></h2>
<hr class="half-width">
<h3 id="3-monitor-the-model-figure-1">Figure 1</h3>
<p aria-hidden="true">Image 1 of 1: ‘18 European locations in the weather prediction dataset’</p>
<figure><img src="fig/03_weather_prediction_dataset_map.png" alt="18 European locations in the weather prediction dataset" class="figure mx-auto d-block"><div class="figcaption">European locations in the weather prediction
dataset</div>
</figure><hr>
<h3 id="3-monitor-the-model-figure-2">Figure 2</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of the loss as a function of the weights. Through gradient descent the global loss minimum is found’</p>
<figure><img src="fig/03_gradient_descent.png" alt="Plot of the loss as a function of the weights. Through gradient descent the global loss minimum is found" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-3">Figure 3</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of the RMSE over epochs for the trained model that shows a decreasing error metric’</p>
<figure><img src="fig/03_training_history_1_rmse.png" alt="Plot of the RMSE over epochs for the trained model that shows a decreasing error metric" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-4">Figure 4</h3>
<p aria-hidden="true">Image 1 of 1: ‘Scatter plot between predictions and true sunshine hours in Basel on the train set showing a concise spread’</p>
<figure><img src="fig/03_regression_predictions_trainset.png" alt="Scatter plot between predictions and true sunshine hours in Basel on the train set showing a concise spread" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-5">Figure 5</h3>
<p aria-hidden="true">Image 1 of 1: ‘Scatter plot between predictions and true sunshine hours in Basel on the test set showing a wide spread’</p>
<figure><img src="fig/03_regression_predictions_testset.png" alt="Scatter plot between predictions and true sunshine hours in Basel on the test set showing a wide spread" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-6">Figure 6</h3>
<p aria-hidden="true">Image 1 of 1: ‘Scatter plot of predicted vs true sunshine hours in Basel for the test set where today's sunshine hours is considered as the true sunshine hours for tomorrow’</p>
<figure><img src="fig/03_regression_test_5_naive_baseline.png" alt="Scatter plot of predicted vs true sunshine hours in Basel for the test set where today's sunshine hours is considered as the true sunshine hours for tomorrow" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-7">Figure 7</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of RMSE vs epochs for the training set and the validation set which depicts a divergence between the two around 10 epochs.’</p>
<figure><img src="fig/03_training_history_2_rmse.png" alt="Plot of RMSE vs epochs for the training set and the validation set which depicts a divergence between the two around 10 epochs." class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-8">Figure 8</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of RMSE vs epochs for the training set and the validation set with similar performance across the two sets.’</p>
<figure><img src="fig/03_training_history_3_rmse_smaller_model.png" alt="Plot of RMSE vs epochs for the training set and the validation set with similar performance across the two sets." class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-9">Figure 9</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of RMSE vs epochs for the training set and the validation set displaying similar performance across the two sets.’</p>
<figure><img src="fig/03_training_history_3_rmse_early_stopping.png" alt="Plot of RMSE vs epochs for the training set and the validation set displaying similar performance across the two sets." class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-10">Figure 10</h3>
<p aria-hidden="true">Image 1 of 1: ‘Output of plotting sample’</p>
<figure><img src="fig/03_training_history_5_rmse_batchnorm.png" alt="Output of plotting sample" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-11">Figure 11</h3>
<p aria-hidden="true">Image 1 of 1: ‘Scatter plot between predictions and true sunshine hours for Basel on the test set’</p>
<figure><img src="fig/03_regression_test_5_dropout_batchnorm.png" alt="Scatter plot between predictions and true sunshine hours for Basel on the test set" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-12">Figure 12</h3>
<p aria-hidden="true">Image 1 of 1: ‘Scatterplot of predictions and true number of sunshine hours’</p>
<figure><img src="fig/03_scatter_plot_basel_model.png" alt="Scatterplot of predictions and true number of sunshine hours" class="figure mx-auto d-block"></figure><hr>
<h3 id="3-monitor-the-model-figure-13">Figure 13</h3>
<p aria-hidden="true">Image 1 of 1: ‘Screenshot of tensorboard’</p>
<p>Which will show an interface that looks something like this: <img src="fig/03_tensorboard.png" alt="Screenshot of tensorboard" class="figure"></p>
<hr></section><section id="4-advanced-layer-types"><h2 class="section-heading"><a href="4-advanced-layer-types.html">Advanced layer types</a></h2>
<hr class="half-width">
<h3 id="4-advanced-layer-types-figure-1">Figure 1</h3>
<p aria-hidden="true">Image 1 of 1: ‘A 5 by 5 grid of 25 sample images from the dollar street 10 data-set. Each image is labelled with a category, for example: 'street sign' or 'soap dispenser'.’</p>
<figure><img src="fig/04_dollar_street_10.png" alt="A 5 by 5 grid of 25 sample images from the dollar street 10 data-set. Each image is labelled with a category, for example: 'street sign' or 'soap dispenser'." class="figure mx-auto d-block"><div class="figcaption">Sample images from the Dollar Street 10 dataset.
Each image is labelled with a category, for example: ‘street sign’ or
‘soap dispenser’</div>
</figure><hr>
<h3 id="4-advanced-layer-types-figure-2">Figure 2</h3>
<p aria-hidden="true">Image 1 of 1: ‘Example of a convolution matrix calculation’</p>
<figure><img src="fig/04_conv_matrix.png" style="width:90%" alt="Example of a convolution matrix calculation" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-3">Figure 3</h3>
<p aria-hidden="true">Image 1 of 1: ‘Convolution example on an image of a cat to extract features’</p>
<figure><img src="fig/04_conv_image.png" style="width:100%" alt="Convolution example on an image of a cat to extract features" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-4">Figure 4</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of training accuracy and validation accuracy vs epochs for the trained model’</p>
<figure><img src="fig/04_training_history_1.png" alt="Plot of training accuracy and validation accuracy vs epochs for the trained model" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-5">Figure 5</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of training loss and validation loss vs epochs for the trained model’</p>
<figure><img src="fig/04_training_history_loss_1.png" alt="Plot of training loss and validation loss vs epochs for the trained model" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-6">Figure 6</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of training accuracy and validation accuracy vs epochs for a model with only dense layers’</p>
<figure><img src="fig/04_dense_model_training_history.png" alt="Plot of training accuracy and validation accuracy vs epochs for a model with only dense layers" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-7">Figure 7</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of training accuracy and validation accuracy vs epochs for the trained model’</p>
<figure><img src="fig/04_training_history_2.png" alt="Plot of training accuracy and validation accuracy vs epochs for the trained model" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-8">Figure 8</h3>
<p aria-hidden="true">Image 1 of 1: ‘A sketch of a neural network with and without dropout’</p>
<figure><img src="fig/neural_network_sketch_dropout.png" alt="A sketch of a neural network with and without dropout" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-9">Figure 9</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of training accuracy and validation accuracy vs epochs for the trained model’</p>
<figure><img src="fig/04_training_history_3.png" alt="Plot of training accuracy and validation accuracy vs epochs for the trained model" class="figure mx-auto d-block"></figure><hr>
<h3 id="4-advanced-layer-types-figure-10">Figure 10</h3>
<p aria-hidden="true">Image 1 of 1: ‘Plot of vall loss vs dropout rate used in the model. The val loss varies between 2.3 and 2.0 and is lowest with a dropout_rate of 0.9’</p>
<figure><img src="fig/04_vary_dropout_rate.png" alt="Plot of vall loss vs dropout rate used in the model. The val loss varies between 2.3 and 2.0 and is lowest with a dropout_rate of 0.9" class="figure mx-auto d-block"></figure><hr></section><section id="5-transfer-learning"><h2 class="section-heading"><a href="5-transfer-learning.html">Transfer learning</a></h2>
<hr class="half-width">
<h3 id="5-transfer-learning-figure-1">Figure 1</h3>
<p aria-hidden="true">Image 1 of 1: ‘Training history for training the pre-trained-model. The training accuracy slowly raises from 0.2 to 0.9 in 20 epochs. The validation accuracy starts higher at 0.25, but reaches a plateau around 0.64’</p>
<p><img src="fig/05_training_history_transfer_learning.png" alt="Training history for training the pre-trained-model. The training accuracy slowly raises from 0.2 to 0.9 in 20 epochs. The validation accuracy starts higher at 0.25, but reaches a plateau around 0.64" class="figure">
The final validation accuracy reaches 64%, this is a huge improvement
over 30% accuracy we reached with the simple convolutional neural
network that we build from scratch in the previous episode.</p>
<hr></section><section id="6-outlook"><h2 class="section-heading"><a href="6-outlook.html">Outlook</a></h2>
<hr class="half-width"></section>
</div>
</main>
</div>
<!-- END : inst/pkgdown/templates/content-extra.html -->
</div>
<!--/div.row-->
<footer class="row footer mx-md-3"><hr>
<div class="col-md-6">
<p>This lesson is subject to the <a href="CODE_OF_CONDUCT.html">Code of Conduct</a></p>
<p>
<a href="https://github.com/carpentries-incubator/deep-learning-intro/edit/main/README.md" class="external-link">Edit on GitHub</a>
| <a href="https://github.com/carpentries-incubator/deep-learning-intro/blob/main/CONTRIBUTING.md" class="external-link">Contributing</a>
| <a href="https://github.com/carpentries-incubator/deep-learning-intro/" class="external-link">Source</a></p>
<p><a href="https://github.com/carpentries-incubator/deep-learning-intro/blob/main/CITATION.cff" class="external-link">Cite</a> | <a href="mailto:[email protected]">Contact</a> | <a href="https://carpentries.org/about/" class="external-link">About</a></p>
</div>
<div class="col-md-6">
<p>Materials licensed under <a href="LICENSE.html">CC-BY 4.0</a> by the authors</p>
<p>Template licensed under <a href="https://creativecommons.org/licenses/by-sa/4.0/" class="external-link">CC-BY 4.0</a> by <a href="https://carpentries.org/" class="external-link">The Carpentries</a></p>
<p>Built with <a href="https://github.com/carpentries/sandpaper/tree/0.16.10" class="external-link">sandpaper (0.16.10)</a>, <a href="https://github.com/carpentries/pegboard/tree/0.7.7" class="external-link">pegboard (0.7.7)</a>, and <a href="https://github.com/carpentries/varnish/tree/1.0.5" class="external-link">varnish (1.0.5)</a></p>
</div>
</footer>
</div> <!-- / div.container -->
<div id="to-top">
<a href="#top">
<i class="search-icon" data-feather="arrow-up" role="img" aria-label="Back To Top"></i><br><!-- <span class="d-none d-sm-none d-md-none d-lg-none d-xl-block">Back</span> To Top --><span class="d-none d-sm-none d-md-none d-lg-none d-xl-block">Back</span> To Top
</a>
</div>
<script type="application/ld+json">
{
"@context": "https://schema.org",
"@type": "TrainingMaterial",
"@id": "https://carpentries-incubator.github.io/deep-learning-intro/images.html",
"inLanguage": "en",
"dct:conformsTo": "https://bioschemas.org/profiles/TrainingMaterial/1.0-RELEASE",
"description": "A Carpentries Lesson teaching foundational data and coding skills to researchers worldwide",
"keywords": "deep learning, keras, lesson, The Carpentries, neural networks",
"name": "All Images",
"creativeWorkStatus": "active",
"url": "https://carpentries-incubator.github.io/deep-learning-intro/images.html",
"identifier": "https://carpentries-incubator.github.io/deep-learning-intro/images.html",
"dateCreated": "2020-10-17",
"dateModified": "2024-12-03",
"datePublished": "2024-12-03"
}
</script><script>
feather.replace();
</script>
</body>
</html><!-- END: inst/pkgdown/templates/layout.html-->