-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression_tree.py
89 lines (84 loc) · 2.64 KB
/
regression_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
'''
最小二乘回归树
'''
from collections import defaultdict
import numpy as np
import pandas
from decision_tree import read_csv, Gini
from cart_decision_tree import Node
class RegressionTree:
def __init__(self):
self.root = None
def train(self, X, Y, header):
assert self.root is None
self.root = self._get_node(X, Y, header)
def _get_node(self, X, Y, header):
M = Gini
assert X.ndim == 2
assert len(X) == len(Y)
num_features = X.shape[1]
if num_features == 0:
# 特征集合为空
return Node(cls=Y.mean())
ys = np.unique(Y)
if len(ys) == 1:
# 所有实例属于同一类
return Node(cls=ys[0])
best_loss = None
best_iv = None
for i in range(num_features):
feature = X[:, i]
xs = np.sort(np.unique(feature))
xs = (xs[1:] + xs[:-1]) / 2.0
for v in xs:
mask_eq = feature <= v
mask_ne = ~mask_eq
c1 = np.mean(Y[mask_eq])
c2 = np.mean(Y[mask_ne])
PY = np.empty_like(Y)
PY[mask_eq] = c1
PY[mask_ne] = c2
loss = np.square(Y - PY).sum()
if best_loss is None or loss < best_loss:
best_loss = loss
best_iv = (i, v)
best_i, best_v = best_iv
feature = X[:, best_i]
name = header[best_i]
node = Node(name=name, s=best_v, continuous=True)
mask = feature < best_v
node.nodes[0] = self._get_node(
X[mask],
Y[mask],
header)
node.nodes[1] = self._get_node(
X[~mask],
Y[~mask],
header)
return node
def predict(self, X, header):
mheader = dict((name, i) for i, name in enumerate(header))
Y = np.empty((len(X), ), dtype=np.object)
for i, x in enumerate(X):
Y[i] = self._predict_one(x, mheader)
return Y
def _predict_one(self, x, mheader):
node = self.root
while not node.leaf:
i = mheader[node.name]
node = node.nodes[int(x[i] > node.s)]
assert node.leaf
return node.leaf_cls
def __str__(self):
return str(self.root)
if __name__ == '__main__':
fname = '../data/table5.2.csv'
header, data = read_csv(fname)
X, Y = data[:, :-1], data[:, -1]
rt = RegressionTree()
rt.train(X, Y, header)
print(rt)
PY = rt.predict(X, header)
loss = np.square(PY - Y).sum()
print(Y, PY)
print(f"Loss: {loss:.5}")