-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
301 lines (248 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import time
from datetime import datetime
import socket
import os
import glob
from tqdm import tqdm
import importlib
import argparse
import numpy as np
import random
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from tensorboardX import SummaryWriter
from datasets import UCF101Dataset
from models import S3DG
from utils.process import load_pretrained_model, load_checkpoint_model
from utils.utils import AverageMeter, accuracy
from utils.utils import Logger, savefig
from utils.settings import from_file
# CUDA_DEVICES = [0, 1, 2, 3, 4, 5, 6, 7]
# os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3, 4, 5, 6, 7"
# CUDA_DEVICES = [0]
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
torch.backends.cudnn.benchmark = True
# Use GPU if available else revert to CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("\nGPU being used:", torch.cuda.is_available())
def parse_args():
parser = argparse.ArgumentParser(description='Train an SpeedNet')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work_dir', help='the dir to save logs and models')
parser.add_argument(
'--load_from', help='the pretrained weight to init model')
parser.add_argument(
'--resume_from', help='the checkpoint file to resume from')
parser.add_argument('--seed', type=int, help='random seed')
parser.add_argument('--validate', '-v', action='store_true', default=False,
help='whether do the validation during training')
parser.add_argument('--gpus', type=int, default=8, help='gpu number')
args = parser.parse_args()
return args
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
args = parse_args()
cfg = from_file(args.config)
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.load_from is not None:
cfg.load_from = args.load_from
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.seed is not None:
cfg.seed = args.seed
if args.gpus is not None:
cfg.gpus = args.gpus
# set random seeds
if cfg.seed is not None:
print('Set random seed to {}'.format(cfg.seed))
set_random_seed(cfg.seed)
if not os.path.exists(cfg.work_dir):
os.makedirs(cfg.work_dir)
################ 1 DATA ###################
print('Training model on {} dataset...'.format(cfg.data['dataset']))
batch_size = cfg.data['batch_size'] * cfg.gpus
train_dataset = UCF101Dataset(data_file=cfg.data['train_file'], img_tmpl=cfg.data['train_img_tmp'],
clip_len=cfg.data['train_clip_len'], size=cfg.data['size'], mode='train', shuffle=True)
train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=8)
val_dataset = UCF101Dataset(data_file=cfg.data['val_file'], img_tmpl=cfg.data['val_img_tmp'],
clip_len=cfg.data['val_clip_len'], size=cfg.data['size'], mode='val', shuffle=False)
val_dataloader= DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False, num_workers=8)
################ 2 MODEL ##################
if cfg.load_from is not None:
print('Init the model from pretrained weight {}.'.format(cfg.load_from))
model = S3DG(num_class=cfg.model['num_class'])
load_pretrained_model(model, pretrained_path=cfg.load_from)
else:
print('Init the model from scratch.')
model = S3DG(num_class=cfg.model['num_class'])
# MODEL
# NOTE: train and resume train must have same number of GPU, since the name 'module'
# nn.parallel
if cfg.resume_from is not None:
load_checkpoint_model(model, checkpoint_path=cfg.resume_from)
if torch.cuda.device_count() > 1:
print('use %d gpus' % (torch.cuda.device_count()))
model = nn.DataParallel(model, device_ids=range(cfg.gpus))
else:
print('use 1 gpu')
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
model.to(device)
# ################### 3 CRITERION and OPTIMIZER #########################
criterion = nn.CrossEntropyLoss().to(device) # standard crossentropy loss for classification
# criterion = nn.BCEWithLogitsLoss().to(device)
optimizer = optim.SGD(model.parameters(), lr=cfg.lr, momentum=0.9, weight_decay=5e-4)
# set lr scheduler
if cfg.lr_scheduler is not None:
if cfg.lr_scheduler['type'] == 'step':
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=cfg.lr_scheduler['step'], gamma=cfg.lr_scheduler['gamma'])
elif cfg.lr_scheduler['type'] == 'multistep':
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.lr_scheduler['step'], gamma=cfg.lr_scheduler['gamma'])
elif cfg.lr_scheduler['type'] == 'exponent':
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=cfg.lr_scheduler['gamma'])
log_path = cfg.work_dir
# IF RESUME
if cfg.resume_from is not None:
checkpoint = torch.load(cfg.resume_from)
print("Resume training from checkpoint: {}...".format(cfg.resume_from))
optimizer.load_state_dict(checkpoint['opt_dict'])
scheduler.load_state_dict(checkpoint['lr_dict'])
resume_epoch = checkpoint['epoch'] + 1
logger = Logger(os.path.join(log_path, 'log.txt'), resume=True)
else:
print("Training model from start...")
resume_epoch = 0
logger = Logger(os.path.join(log_path, 'log.txt'))
logger.set_names(['Learning Rate', 'Train Loss', 'Val Loss', 'Train Acc.', 'Val Acc.'])
# tensorboard
log_dir = os.path.join(cfg.work_dir, datetime.now().strftime('%b%d_%H-%M-%S'))
writer = SummaryWriter(log_dir=log_dir)
################## 4 BEGIN TRAINING #########################
num_epochs = cfg.num_epochs
save_epoch = cfg.interval
save_dir = cfg.work_dir
display = cfg.display
best_acc = 0.0
best_epoch = 0
for epoch in tqdm(range(resume_epoch, num_epochs)):
print('\n----------------- Training -------------------')
print('Epoch: {}/{}'.format(epoch, num_epochs-1))
train_loss, train_acc = train(train_dataloader, model, criterion, optimizer, epoch, writer, display)
if args.validate:
print('\n----------------- Validation -------------------')
print('Epoch: {}/{}'.format(epoch, num_epochs-1))
val_loss, val_acc = validation(val_dataloader, model, criterion, optimizer, epoch, writer, display)
if val_acc >= best_acc:
best_acc = val_acc
best_epoch = epoch
print("\nThe best validation top1-accuracy: {:.3f}%, the best epoch: {}".format(best_acc,best_epoch))
# EPOCH
lr = optimizer.state_dict()['param_groups'][0]['lr']
if args.validate:
logger.append([lr, train_loss, val_loss, train_acc, val_acc])
else:
logger.append([lr, train_loss, 0.0, train_acc, 0.0]) # no valid
writer.add_scalar('train/learning_rate', optimizer.state_dict()['param_groups'][0]['lr'], epoch)
if cfg.lr_scheduler is not None:
scheduler.step()
if epoch % save_epoch == 0:
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'opt_dict': optimizer.state_dict(),
'lr_dict': scheduler.state_dict()
}, os.path.join(save_dir, 'epoch-' + str(epoch) + '.pth'))
writer.close()
logger.close()
logger.plot()
savefig(os.path.join(log_path, 'log.eps'))
def train(train_loader, model, criterion, optimizer, epoch, writer, display):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
top1 = AverageMeter()
top5 = AverageMeter()
pbar = tqdm(train_loader)
for step, (inputs, labels) in enumerate(pbar):
data_time.update(time.time() - end)
inputs = inputs.cuda() # (bs, C, T, H, W)
labels = labels.cuda() # (bs)
outputs = model(inputs)
loss = criterion(outputs, labels)
prec1, prec5 = accuracy(outputs.data, labels, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if (step + 1) % display == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, step, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr']))
print(output)
total_step = epoch * len(train_loader) + step + 1
writer.add_scalar('train/loss', losses.avg, total_step)
writer.add_scalar('train/top1-acc', top1.avg, total_step)
writer.add_scalar('train/top5-acc', top5.avg, total_step)
for name, layer in model.named_parameters():
writer.add_histogram('train/' + name + '._grad', layer.grad.cpu().data.numpy(), total_step)
writer.add_histogram('train/' + name + '._data', layer.cpu().data.numpy(), total_step)
return losses.avg, top1.avg
def validation(val_loader,model,criterion,optimizer,epoch, writer, display):
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
total_loss = 0.0
with torch.no_grad():
pbar = tqdm(val_loader)
for step, (inputs,labels) in enumerate(pbar):
data_time.update(time.time() - end)
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
loss = criterion(outputs, labels)
losses.update(loss.item(),inputs.size(0))
prec1, prec5 = accuracy(outputs.data, labels, topk=(1, 5))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
batch_time.update(time.time() - end)
end = time.time()
total_loss += loss.item()
if (step +1) % display == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, step, len(val_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr']))
print(output)
total_step = epoch * len(train_loader) + step + 1
writer.add_scalar('val/loss', losses.avg, total_step)
writer.add_scalar('val/top1-acc', top1.avg, total_step)
writer.add_scalar('val/top5-acc', top5.avg, total_step)
avg_loss = total_loss / len(val_loader)
return avg_loss,top1.avg
if __name__ == '__main__':
main()