An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of ECCV 2020 Robust Vision Challenges.
Simple multi-dataset detection,
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl,
CVPR 2022 (arXiv 2102.13086)
python tools/infer.py -c configs/cascade_rcnn/Partitioned_COI_R50_2x.yml "-o","weights=model_torch.pdparams","--infer_img=17790319373_bd19b24cfc_k.jpg"
python tools/infer.py -c configs/cascade_rcnn/Unified_learned_OCI_R50_2x.yaml "-o","weights=model_torch.pdparams","--infer_img=17790319373_bd19b24cfc_k.jpg"
python tools/train.py -c configs/cascade_rcnn/Partitioned_COI_R50_2x.yml --eval
请使用官方提供的 datasets/label_space/learned_mAP.json 开启Unified Detector训练
python train_net.py --config-file -c configs/Unified_COI_R50_2x.yaml --eval
官方代码存在bug,reg loss nan 无法复现
After installation, follow the instructions in DATASETS.md to setup the (many) datasets.
If you find this project useful for your research, please use the following BibTeX entry.
@inproceedings{zhou2021simple,
title={Simple multi-dataset detection},
author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
booktitle={CVPR},
year={2022}
}