-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfitexp.cpp
264 lines (223 loc) · 9.16 KB
/
fitexp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#include "hdrmerge.h"
#include "Eigen/QR"
#include <fstream>
/// Evaluate all Bernstein polynomials up to a certain order at 'x'
template <typename Derived> void bernstein(const Eigen::MatrixBase<Derived> &_vec, double x) {
Eigen::MatrixBase<Derived> &vec = const_cast<Eigen::MatrixBase<Derived>&>(_vec);
int size = vec.size();
Eigen::Map<Eigen::VectorXd> temp((double *) alloca(size * sizeof(double)), size);
vec[0] = 1;
for (int i=1; i<size; ++i) {
temp[i] = 0;
temp.head(i) = vec.head(i) * (1-x);
temp.segment(1, i) += vec.head(i) * x;
vec.head(i+1) = temp.head(i+1);
}
}
/**
* Simple data structure to keep track of fixed-size approximately
* constant image patches that will be used to recover the camera
* response function
*/
struct Patch {
static const size_t patch_size = 20;
size_t x, y;
/// Default dummy constructor
inline Patch() { }
/// Randomly sample a patch position
inline Patch(const ExposureSeries &es) {
x = 2 * (size_t) (randf() * (es.width - 4*patch_size)/2) + patch_size;
y = 2 * (size_t) (randf() * (es.height - 4*patch_size)/2) + patch_size;
}
void computeStatistics(const ExposureSeries &es, int img, float *min, float *max, float *rel_stddev) const {
float mean[3], variance[3];
int count[3];
for (int i=0; i<3; ++i) {
min[i] = std::numeric_limits<float>::infinity();
max[i] = -std::numeric_limits<float>::infinity();
variance[i] = 0;
mean[i] = 0;
count[i] = 0;
}
for (size_t yo=0; yo<patch_size; ++yo) {
for (size_t xo=0; xo<patch_size; ++xo) {
int color = es.fc(x+xo, y+yo);
float value = es.eval(img, x+xo, y+yo);
min[color] = std::min(min[color], value);
max[color] = std::max(max[color], value);
mean[color] += value;
count[color]++;
}
}
for (int i=0; i<3; ++i)
mean[i] /= count[i];
for (size_t yo=0; yo<patch_size; ++yo) {
for (size_t xo=0; xo<patch_size; ++xo) {
int color = es.fc(x+xo, y+yo);
float diff = es.eval(img, x+xo, y+yo)-mean[color];
variance[color] += diff*diff;
}
}
for (int i=0; i<3; ++i)
rel_stddev[i] = std::sqrt(variance[i] / (count[i]-1)) / std::abs(mean[i]);
}
void computeMean(const ExposureSeries &es, int img, float *mean) const {
int count[3] = { 0, 0, 0 };
memset(mean, 0, sizeof(float)*3);
for (size_t yo=0; yo<patch_size; ++yo) {
for (size_t xo=0; xo<patch_size; ++xo) {
int color = es.fc(x+xo, y+yo);
mean[color] += es.eval(img, x+xo, y+yo);
count[color]++;
}
}
for (int i=0; i<3; ++i)
mean[i] /= count[i];
}
/// Heuristic for deciding whether or not a patch is "good"
bool isGood(const ExposureSeries &es, int img, int ch) const {
float min[3], max[3], rel_stddev[3];
computeStatistics(es, img, min, max, rel_stddev);
return
min[ch] > 0.01 &&
max[ch] < es.saturation-0.05 &&
rel_stddev[ch] < 0.1f;
}
/// Does a patch overlap another patch?
bool overlaps(const Patch &p) const {
return std::abs(int(x-p.x)) < patch_size &&
std::abs(int(y-p.y)) < patch_size;
}
};
void ExposureSeries::fitExposureTimes() {
const int patches_per_exposure = 200,
max_tries = patches_per_exposure * 100,
channel = 1; // Use green channel for the estimation
std::vector<Patch> patches, patchList;
std::vector<bool> good(exposures.size());
int good_exposures = 0;
cout << "Fitting exposure times .. " << endl;
for (size_t img=0; img<exposures.size(); ++img) {
patches.erase(std::remove_if(patches.begin(), patches.end(),
[&](const Patch &p) { return !p.isGood(*this, img, channel); }), patches.end());
int tries = 0;
for (tries=0; tries<max_tries; ++tries) {
if ((int) patches.size() == patches_per_exposure)
break;
Patch patch(*this);
/* Phase 1: is the sample good? */
if (!patch.isGood(*this, img, channel))
continue;
/* Phase 2: overlap test (could be accelerated, oh well..) */
bool valid = true;
for (size_t i=0; i<patches.size(); ++i) {
if (patch.overlaps(patches[i])) {
valid = false;
break;
}
}
if (!valid)
continue;
patches.push_back(patch);
patchList.push_back(patch);
}
good[img] = (patches.size() == (size_t) patches_per_exposure);
cout << " - Exposure " << img << ": found " << patches.size()
<< " well-exposed uniform patches after " << tries << " tries." << endl;
if (!good[img])
cerr << " Warning: not enough patches found -- consider removing this" << endl
<< " exposure (excluding from the fit)" << endl;
else
++good_exposures;
}
if (good_exposures < 3)
throw std::runtime_error("Less than 3 good exposures .. this is not going to work!");
size_t nRows = 0;
for (size_t i=0; i<patchList.size(); ++i)
for (size_t img=0; img<exposures.size(); ++img)
if (good[img] && patchList[i].isGood(*this, img, channel))
++nRows;
Eigen::MatrixXd A(nRows + 1, good_exposures + patchList.size());
Eigen::VectorXd b(nRows + 1);
A.setZero();
b.setZero();
size_t row = 0;
for (size_t i=0; i<patchList.size(); ++i) {
int exposure_idx = 0;
for (size_t img=0; img<exposures.size(); ++img) {
if (!good[img])
continue;
if (patchList[i].isGood(*this, img, channel)) {
A(row, exposure_idx) = 1;
A(row, good_exposures + i) = 1;
float mean[3];
patchList[i].computeMean(*this, img, mean);
b(row) = std::log(mean[channel]) / std::log(2);
row++;
}
++exposure_idx;
}
}
float longestExposure;
for (size_t img=0; img<exposures.size(); ++img) {
if (!good[img])
continue;
longestExposure = exposures[img].exposure;
}
cout << " - Assuming that the " << longestExposure << "s exposure is accurate (and computing the" << endl
<< " other exposure times with respect to it)" << endl;
A(nRows, good_exposures-1) = 1;
b(nRows) = std::log(longestExposure) / std::log(2);
Eigen::VectorXd result = A.colPivHouseholderQr().solve(b);
size_t index = 0;
std::vector<float> exposuretimes_old(exposures.size());
for (size_t img=0; img<exposures.size(); ++img) {
exposuretimes_old[img] = exposures[img].exposure;
if (!good[img])
continue;
exposures[img].exposure = std::pow(2.0, result[index]);
index++;
}
cout << endl;
cout << "Fitting is done. To cause hdrmerge to use these corrected exposure times in" << endl
<< "future sessions, add the following line to hdrmerge.cfg:" << endl
<< endl
<< "exptimes = ";
for (size_t img=0; img<exposures.size(); ++img) {
printf("%.20g->%.20g%s", exposuretimes_old[img], exposures[img].exposure,
img+1 < exposures.size() ? ", " : "");
}
cout << endl << endl;
cout << "To verify the quality of this fit, execute the script 'exptime_showfit.m' in" << endl
<< "MATLAB or Octave. The data points should nicely align to the diagonal." << endl
<< endl;
{
std::ofstream os("exptime_showfit.m");
os.precision(10);
os << "datapoints=[";
for (size_t patch_idx=0; patch_idx<patchList.size(); ++patch_idx) {
const Patch &patch = patchList[patch_idx];
for (size_t img=0; img<exposures.size(); ++img) {
if (!patch.isGood(*this, img, channel))
continue;
float mean[3];
patch.computeMean(*this, img, mean);
float x = mean[channel];
float y = std::pow(2.0f, result(good_exposures + patch_idx)) * exposures[img].exposure;
float z = std::pow(2.0f, result(good_exposures + patch_idx)) * exposuretimes_old[img];
os << x << ", " << y << ", " << z << "; ";
}
}
os << "];";
os << "subplot(2,1,1)" << endl;
os << "plot(datapoints(:,3), datapoints(:, 1), '.');" << endl;
os << "hold on;" << endl;
os << "title('Exposure times provided by the EXIF tags');" << endl;
os << "plot([0 1],[0 1], 'r');" << endl;
os << "subplot(2,1,2)" << endl;
os << "plot(datapoints(:,2), datapoints(:, 1), '.');" << endl;
os << "hold on;" << endl;
os << "title('Fitted exposure times');" << endl;
os << "plot([0 1],[0 1], 'r');" << endl;
}
}