-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments.py
159 lines (140 loc) · 6.01 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import logging
import numpy as np
import pandas as pd
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import r2_score
from sklearn.model_selection import GridSearchCV, cross_val_score, cross_val_predict
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from skopt import gp_minimize
from tqdm import tqdm
from configs import experiment_configs
from constants import OUTPUT_DATA_COLUMNS, RESULTS_PATH
from utils import load_data, process_data, get_models_dict
class Experiments:
def __init__(self, config, data):
self.config = config
self.data = data
self.X_train = None
self.X_test = None
self.y_train = None
self.y_test = None
self.models_dict = None
self.search_results_df = None
self.target_column = None
self.search_results_dfs = []
def run_experiment(self):
for self.target_column in OUTPUT_DATA_COLUMNS:
logging.info(f"Running experiment {self.config['experiment_id']} for target: {self.target_column}")
(
self.X_train,
self.X_test,
self.y_train,
self.y_test
) = process_data(
data=data,
target_column=self.target_column,
augmentation=config['augmentation']
)
self.models_dict = get_models_dict(
model_names=config['model_names'],
hyperparameters_tuning_method=config['hyperparameters_tuning_method']
)
self._train_models()
self._save_results()
logging.info(f"Saved results")
def testing_final_model(self):
# TODO
pass
def _save_results(self):
results_file_name = f"{config['experiment_id']}.csv"
results_df = pd.concat(self.search_results_dfs).reset_index(drop=True)
results_df.to_csv(RESULTS_PATH / results_file_name)
def _train_models(self):
if self.config['hyperparameters_tuning_method'] == 'bs':
results = []
assert len(config['model_names']) == 1, "Podaj tylko jeden model na raz"
model_name = config['model_names'][0]
model_name, (model, param_space) = list(self.models_dict.items())[0]
# Define the objective function for optimization (RMSE and R2)
def objective(params):
if model_name == 'gb':
n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features, learning_rate = params
model = GradientBoostingRegressor(
n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
max_features=max_features,
learning_rate=learning_rate
)
rmse = -np.mean(
cross_val_score(model,
self.X_train,
self.y_train,
cv=5,
scoring='neg_root_mean_squared_error'))
y_pred = cross_val_predict(model, self.X_train, self.y_train, cv=5)
r2 = r2_score(self.y_train, y_pred)
if model_name == 'gb':
results.append(
[n_estimators, max_depth, min_samples_split,
min_samples_leaf, max_features, learning_rate,
rmse, r2])
return rmse
_ = gp_minimize(objective, param_space,
n_calls=50, random_state=0, n_jobs=-1)
if model_name == 'gb':
search_results_df = pd.DataFrame(
results,
columns=['n_estimators', 'max_depth', 'min_samples_split',
'min_samples_leaf', 'max_features', 'learning_rate',
'RMSE', 'R2']
)
search_results_df.insert(0, 'target', self.target_column)
self.search_results_dfs.append(search_results_df)
if self.config['hyperparameters_tuning_method'] == 'gs':
grid_search_results = []
pbar_inner = tqdm(self.models_dict.items())
for model_name, (model, param_grid) in pbar_inner:
pipe = Pipeline([
('scaler', StandardScaler()),
('model', model)
])
grid_search = GridSearchCV(
pipe,
param_grid,
cv=3,
scoring=['neg_root_mean_squared_error', 'r2'],
refit='neg_root_mean_squared_error',
n_jobs=-1,
verbose=0
)
grid_search.fit(self.X_train, self.y_train)
cv_results_df = pd.DataFrame(grid_search.cv_results_)[[
'params',
'mean_test_neg_root_mean_squared_error',
'std_test_neg_root_mean_squared_error',
'mean_test_r2',
'std_test_r2',
'mean_fit_time'
]]
cv_results_df['model_name'] = model_name
grid_search_results.append(
cv_results_df
)
search_results_df = (
pd.concat(grid_search_results)
.sort_values(
'mean_test_neg_root_mean_squared_error',
ascending=False
).reset_index(drop=True)
)
search_results_df.insert(0, 'target', self.target_column)
self.search_results_dfs.append(search_results_df)
if __name__ == "__main__":
data = load_data()
pbar = tqdm(experiment_configs)
for config in pbar:
experiments = Experiments(config=config, data=data)
experiments.run_experiment()