-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf-estimator-test.py
30 lines (23 loc) · 1.03 KB
/
tf-estimator-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import tensorflow as tf
#define features
feature_columns = [tf.feature_column.numeric_column("x", shape=[1])]
#set up estimator
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
#read and set up data sets
#training set
x_train = np.array([1.,2.,3.,4.])
y_train = np.array([0.,-1.,-2.,-3.])
#evaluation set
x_eval = np.array([2.,5.,8.,1.])
y_eval = np.array([-1.01,-4.1,-7,0.])
input_fn = tf.estimator.inputs.numpy_input_fn({"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn({"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn({"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)
#train
estimator.train(input_fn=input_fn, steps=1000)
#evaluate
train_metrics = estimator.evaluate(input_fn = train_input_fn)
eval_metrics = estimator.evaluate(input_fn = eval_input_fn)
print("train metrics: %r"% train_metrics)
print("eval metrics: %r"% eval_metrics)