-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinversionFreeRake.m
244 lines (211 loc) · 7.87 KB
/
inversionFreeRake.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function [gsmooth, G, Gg, slip, synth, mil] = inversionFreeRake(patchstruct, resampstruct,Dnoise, lambdas, triId, flag)
% INVERTJRI_FREERAKE Linear inversion using jRi where rake is allowed to vary
%
% Usage
% [gsmooth, G, Gg, mil, synth] = invertJRI_freerake(patchstruct, resampstruct,Dnoise, lambdas, triId, flag)
%
%
% Edited June 24, 2010, by WDB
% Updated Nov 9, 2010 by WDB
% Cornell University
%
% Citation: Barnhart, W. D., and R. B. Lohman (2010), Automated fault
% model discretization for inversions for coseismic slip distributions,
% J. Geophys. Res., 115, B10419, doi:10.1029/2010JB007545.
%
%
% Algorithm to invert for distributed slip using Laplacian smoothing and
% Tikhonov regularization. Smoothing parameter is chosen using the approximate jRi
% method
%
% Variables:
% PATCHSTRUCT - data structure with information about the fault
% orientation and geometry of individual dislocations
%
% RESAMPSTRUCT- data structure with information about the surface
% data locations, values, and LOS vector
%
% DNOISE - data matrix weighted by the inverse of the cholesky
% factorization
%
% ALPHAS - potential smoothing factors for jRi to choose from
%
% TRIID -
%
% FLAG - plotting option. FLAG=0 no figs, FLAG=1 makes figs
global rampg Cdinv nramp rake covd2 smooth_method reg_method data_type faultstruct
options = optimset('LargeScale', 'off', 'MaxIter', 1000);
nPatch = length(patchstruct);
np = length([resampstruct.data]);
[green] = make_green_meade_tri(patchstruct, resampstruct, 0);
green = green';
G = Cdinv*[green; rampg]'; % Weighted Greens Functions
D = [Dnoise; zeros(2*nPatch,1)];
% A = blkdiag(-1*eye(nPatch),0*eye(nPatch),zeros(nramp)); % forces sinsistral strike slip and allows reverse and normal motion
A = blkdiag(1*eye(nPatch),0*eye(nPatch),zeros(nramp)); % forces sinsistral strike slip and allows reverse and normal motion
B = zeros(2*nPatch+nramp,1);
switch smooth_method
case 'laplacian'
smooth = triSmooth(triId); %Laplacian Smoother
smooth = blkdiag(smooth,smooth);
case 'mm'
smooth = eye(2*nPatch); %Minimum moment
end
%%%%% jRi
for i=1:length(lambdas)
lambda = lambdas(i);
gsmooth = [G; lambda*smooth zeros(2*nPatch, nramp)];
[mil1, resnorm, ril] = lsqlin(gsmooth,D,A,B,[],[],[],[],[], options);
Gg = inv(gsmooth'*gsmooth)*G';
N = G*Gg;
M = [eye(np) -N];
iRi = sum(ril(1:np).^2)/np;
covresjRi = M*M';
covresiRi = M*covd2*M';
jRin = mean(diag(covresjRi));
iRin = mean(diag(covresiRi));
oRo_approx = iRi-iRin;
jRi(i) = oRo_approx+jRin;
r_norm(i) = iRi;
m_norm(i) = (smooth*mil1(1:2*nPatch))'*(smooth*mil1(1:2*nPatch));
end
switch reg_method
case 'jRi'
id = find(jRi==min(jRi));
case 'lcurve'
h = figure;
plot(sqrt(r_norm),sqrt(m_norm),'-o')
title('Choose L-Curve ID')
xlabel('Data Norm')
ylabel('Model Norm')
id = input([' \n'...
'\n'...
'Choose ID number of corner point, starting from right \n','s']);
close(h)
end
lambda = lambdas(id);
gsmooth = [G; lambda*smooth zeros(2*nPatch, nramp)];
Gg = inv(gsmooth'*gsmooth)*G';
[mil,resnorm,ril]= lsqlin(gsmooth, D, A, B, [],[],[],[],[],options);
synth = green'*mil(1:2*nPatch);
slip =sqrt(mil(1:nPatch).^2+mil(nPatch+1:2*nPatch).^2);
[m0, mw] = calcMoment(patchstruct, slip,'tri')
%%%% Plot Stuff
if flag==0
return
else
switch data_type
case 'InSAR'
figure
subplot(3,2,1)
semilogx(lambdas, jRi, '.-')
hold on
plot(lambdas(id), jRi(id), 'ro')
axis tight
xlabel('lambda')
ylabel('jRi')
title('jRi Curve')
subplot(3,2,2)
plot(sqrt(r_norm), sqrt(m_norm), '.-')
hold on
plot(sqrt(r_norm(id)), sqrt(m_norm(id)), 'ro')
axis tight
title('L-curve')
rotateFinal
subplot(3,2,3)
patch([patch_new.yfault], [patch_new.zfault], slip')
colorbar
set(gca,'ydir','reverse')
title('Inverted Slip')
subplot(3,2,4)
scatter([resampstruct.X], [resampstruct.Y], 20, [resampstruct.data]', 'filled')
axis image
colorbar
title('Data')
subplot(3,2,5)
scatter([resampstruct.X], [resampstruct.Y], 20, synth', 'filled')
axis image
colorbar
title('Model')
subplot(3,2,6)
scatter([resampstruct.X], [resampstruct.Y], 20, [resampstruct.data]'-synth', 'filled')
axis image
colorbar
title('Misfit')
case 'GPS'
odds = [1:2:np];
evens= [2:2:np];
figure
subplot(3,2,1)
semilogx(lambdas, jRi, '.-')
hold on
plot(lambdas(id), jRi(id), 'ro')
axis tight
xlabel('lambda')
ylabel('jRi')
title('jRi Curve')
subplot(3,2,2)
plot(sqrt(r_norm), sqrt(m_norm), '.-')
hold on
plot(sqrt(r_norm(id)), sqrt(m_norm(id)), 'ro')
axis tight
title('L-curve')
rotateFinal
subplot(3,2,3)
patch([patch_new.yfault], [patch_new.zfault], slip')
colorbar
set(gca,'ydir','reverse')
title('Inverted Slip')
subplot(3,2,4)
quiver([resampstruct.X(odds)],[resampstruct.Y(odds)],[resampstruct.data(odds)],[resampstruct.data(evens)], 1);
axis image
title('Data');
subplot(3,2,5)
quiver([resampstruct.X(odds)],[resampstruct.Y(odds)],[resampstruct.data(odds)],[resampstruct.data(evens)], 1);
hold on
quiver([resampstruct.X(odds)],[resampstruct.Y(odds)],synth(odds),synth(evens), 1,'r');
axis image
title('Model')
subplot(3,2,6)
quiver([resampstruct.X(odds)],[resampstruct.Y(odds)],[resampstruct.data(odds)]-synth(odds),[resampstruct.data(evens)]-synth(evens), 1);
axis image
title('Misfit')
case 'Mixed'
figure
subplot(3,2,1)
semilogx(lambdas, jRi, '.-')
hold on
plot(lambdas(id), jRi(id), 'ro')
axis tight
xlabel('lambda')
ylabel('jRi')
title('jRi Curve')
subplot(3,2,2)
plot(sqrt(r_norm), sqrt(m_norm), '.-')
hold on
plot(sqrt(r_norm(id)), sqrt(m_norm(id)), 'ro')
axis tight
title('L-curve')
rotateFinal
subplot(3,2,3)
patch([patch_new.yfault], [patch_new.zfault], slip')
colorbar
set(gca,'ydir','reverse')
title('Inverted Slip')
subplot(3,2,4)
scatter([resampstruct.X], [resampstruct.Y], 20, [resampstruct.data]', 'filled')
axis image
colorbar
title('Data')
subplot(3,2,5)
scatter([resampstruct.X], [resampstruct.Y], 20, synth', 'filled')
axis image
colorbar
title('Model')
subplot(3,2,6)
scatter([resampstruct.X], [resampstruct.Y], 20, [resampstruct.data]'-synth', 'filled')
axis image
colorbar
title('Misfit')
end
end