-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPaxos.v
281 lines (250 loc) · 8.85 KB
/
Paxos.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
Require Import Setoid.
Set Implicit Arguments.
Ltac invc H := inversion H; subst; clear H.
Module paxos_epr.
Section paxos.
Variables node value quorum round : Type.
Variable none : round.
Variable le : round -> round -> Prop.
Hypothesis le_refl : forall X, le X X.
Hypothesis le_trans : forall X Y Z, le X Y -> le Y Z -> le X Z.
Hypothesis le_antisym : forall X Y, le X Y -> le Y X -> X = Y.
Hypothesis le_total : forall X Y, le X Y \/ le Y X.
Hypothesis round_eq_dec : forall R1 R2 : round, R1 = R2 \/ R1 <> R2.
Variable member : node -> quorum -> Prop.
Hypothesis quorum_intersection : forall Q1 Q2, exists N, member N Q1 /\ member N Q2.
Record state :=
{
one_a : round -> Prop;
one_b : node -> round -> Prop;
left_round : node -> round -> Prop;
proposal : round -> value -> Prop;
vote : node -> round -> value -> Prop;
decision : round -> value -> Prop
}.
Definition init (s : state) : Prop :=
(forall R, ~ one_a s R) /\
(forall N R, ~ one_b s N R) /\
(forall N R, ~ left_round s N R) /\
(forall R V, ~ proposal s R V) /\
(forall N R V, ~ vote s N R V) /\
(forall R V, ~ decision s R V).
Definition send_1a (s s' : state) : Prop :=
exists r,
r <> none /\
(forall R, one_a s' R <-> one_a s R \/ R = r) /\
(forall N R, one_b s' N R <-> one_b s N R) /\
(forall N R, left_round s' N R <-> left_round s N R) /\
(forall R V, proposal s' R V <-> proposal s R V) /\
(forall N R V, vote s' N R V <-> vote s N R V) /\
(forall R V, decision s' R V <-> decision s R V).
Definition join_round (s s' : state) : Prop :=
exists n r,
r <> none /\
one_a s r /\
~ left_round s n r /\
(forall N R, one_b s' N R <-> one_b s N R \/ (N = n /\ R = r)) /\
(forall N R, left_round s' N R <-> left_round s N R \/ (N = n /\ ~ le r R)) /\
(forall R, one_a s' R <-> one_a s R) /\
(forall R V, proposal s' R V <-> proposal s R V) /\
(forall N R V, vote s' N R V <-> vote s N R V) /\
(forall R V, decision s' R V <-> decision s R V).
Definition propose (s s' : state) : Prop :=
exists r q maxr v,
r <> none /\
(forall V, ~ proposal s r V) /\
(forall N, member N q -> one_b s N r) /\
((maxr = none /\ (forall N MAXR V, ~ (member N q /\ ~ le r MAXR /\ vote s N MAXR V))) \/
(maxr <> none /\
(exists N, member N q /\ ~ le r maxr /\ vote s N maxr v) /\
(forall N MAXR V, member N q -> ~ le r MAXR -> vote s N MAXR V -> le MAXR maxr))) /\
(forall R V, proposal s' R V <-> proposal s R V \/ (R = r /\ V = v)) /\
(forall R, one_a s' R <-> one_a s R) /\
(forall N R, one_b s' N R <-> one_b s N R) /\
(forall N R, left_round s' N R <-> left_round s N R) /\
(forall N R V, vote s' N R V <-> vote s N R V) /\
(forall R V, decision s' R V <-> decision s R V).
Definition cast_vote (s s' : state) : Prop :=
exists n v r,
r <> none /\
~ left_round s n r /\
proposal s r v /\
(forall N R V, vote s' N R V <-> vote s N R V \/ (N = n /\ R = r /\ V = v)) /\
(forall R, one_a s' R <-> one_a s R) /\
(forall N R, one_b s' N R <-> one_b s N R) /\
(forall N R, left_round s' N R <-> left_round s N R) /\
(forall R V, proposal s' R V <-> proposal s R V) /\
(forall R V, decision s' R V <-> decision s R V).
Definition decide (s s' : state) : Prop :=
exists r v q,
r <> none /\
(forall N, member N q -> vote s N r v) /\
(forall R V, decision s' R V <-> decision s R V \/ (R = r /\ V = v)) /\
(forall R, one_a s' R <-> one_a s R) /\
(forall N R, one_b s' N R <-> one_b s N R) /\
(forall N R, left_round s' N R <-> left_round s N R) /\
(forall R V, proposal s' R V <-> proposal s R V) /\
(forall N R V, vote s' N R V <-> vote s N R V).
Inductive next : state -> state -> Prop :=
| next_send_1a : forall s s', send_1a s s' -> next s s'
| next_join_round : forall s s', join_round s s' -> next s s'
| next_propose : forall s s', propose s s' -> next s s'
| next_cast_vote : forall s s', cast_vote s s' -> next s s'
| next_decide : forall s s', decide s s' -> next s s'
.
Definition safety (s : state) : Prop :=
forall R1 V1 R2 V2,
decision s R1 V1 ->
decision s R2 V2 ->
V1 = V2.
Definition choosable (s : state) r v : Prop :=
exists q,
forall n,
member n q ->
~ left_round s n r \/ vote s n r v.
Definition inv (s : state) : Prop :=
(forall R V1 V2,
proposal s R V1 ->
proposal s R V2 ->
V1 = V2) /\
(forall N R V,
vote s N R V ->
proposal s R V) /\
(forall N V,
~ vote s N none V) /\
(forall N R1 R2,
one_b s N R2 ->
~ le R2 R1 ->
left_round s N R1) /\
(forall R1 V1 R2 V2,
choosable s R1 V1 ->
~ le R2 R1 ->
proposal s R2 V2 ->
V1 = V2) /\
(forall R V,
decision s R V ->
exists q,
forall n,
member n q ->
vote s n R V)
.
Lemma lt_eq_gt_dec :
forall R1 R2,
~ le R2 R1 \/ R1 = R2 \/ ~ le R1 R2.
Proof.
intros R1 R2.
destruct (le_total R1 R2), (round_eq_dec R1 R2); auto 10.
Qed.
Lemma init_inv :
forall s,
init s ->
inv s.
Proof.
firstorder.
Qed.
Lemma inv_safety :
forall s,
inv s ->
safety s.
Proof.
unfold inv, safety.
intros s (PropUniq & VoteProp & _ & _ & Choose & Dec) R1 V1 R2 V2.
intros [Q1 HQ1]%Dec [Q2 HQ2]%Dec.
destruct (quorum_intersection Q1 Q2) as (n & Hn1 & Hn2).
pose proof HQ1 _ Hn1 as Vote1.
pose proof HQ2 _ Hn2 as Vote2.
assert (choosable s R1 V1) by (unfold choosable; eauto).
assert (choosable s R2 V2) by (unfold choosable; eauto).
destruct (lt_eq_gt_dec R1 R2) as [|[|]]; subst; eauto using eq_sym.
Qed.
Lemma choosable_frame :
forall s s',
(forall N R, left_round s' N R <-> left_round s N R) ->
(forall N R V, vote s' N R V <-> vote s N R V) ->
forall R V, choosable s' R V <-> choosable s R V.
Proof.
intros s s' FLR FV R V.
unfold choosable.
split; intros [q H]; exists q; intros n; specialize (H n);
rewrite FLR, FV in *; auto.
Qed.
Lemma next_inv :
forall s s',
inv s ->
next s s' ->
inv s'.
Proof.
unfold inv.
intros s s' (PU & VP & Vnone & LR & Choose & Dec) Next.
invc Next; [
destruct H as (r & NN & I1a & F1b & FLR & FP & FV & FD)
| destruct H as (n & r & NN & H1a & HNLR & I1b & ILR & F1a & FP & FV & FD)
| destruct H as (r & q & maxr & v & NN & HNP & H1b & HMR & IP & F1a & F1b & FLR & FV & FD)
| destruct H as (n & v & r & NN & HLR & HP & IV & F1a & F1b & FLR & FP & FD)
| destruct H as (r & v & q & NN & HV & ID & F1a & F1b & FLR & FP & FV)
]; repeat split; intros *;
rewrite ?F1b, ?FLR, ?FP, ?FV, ?FD; try rewrite choosable_frame by eassumption; eauto;
try solve [
let q := fresh q in
let n := fresh n in
intros D;
pose proof Dec R V D as [q H];
exists q; intros n; specialize (H n);
now rewrite FV
].
- rewrite I1b, ILR.
specialize (LR N R1 R2).
intuition. subst. auto.
- intros [q C] LE P.
apply Choose with (R1 := R1) (R2 := R2); auto.
exists q.
intros n1.
specialize (C n1).
rewrite ILR, FV in C.
intuition.
- rewrite !IP.
intros [|[]] [|[]]; subst; firstorder.
- intros *. rewrite IP. eauto.
- intros *.
rewrite IP. intros C LE [P|[-> ->]]. eauto.
pose proof C as C'.
destruct C as [Q HQ].
destruct (quorum_intersection q Q) as (w & W1 & W2).
destruct (HQ _ W2).
+ specialize (H1b _ W1).
specialize (LR _ _ _ H1b LE).
contradiction.
+ destruct HMR as [[->HMR]|(EMR & (N & M & LER & V) & HMR)].
specialize (HMR w R1 V1). now intuition.
specialize (HMR w R1 V1 ltac:(assumption) ltac:(assumption) ltac:(assumption)).
apply VP in V.
destruct (round_eq_dec R1 maxr).
* subst. eauto.
* eapply Choose; try apply V; eauto.
- rewrite IV. intuition; subst; eauto.
- rewrite IV. intros [|(-> & <- & ->)]. eapply Vnone; eauto. congruence.
- assert (forall R V, choosable s' R V -> choosable s R V) as FC.
{
unfold choosable.
intros R V (q & H).
exists q.
intros n1 M.
specialize (H n1 M).
rewrite FLR, IV in H.
intuition; subst; auto.
}
intros C%FC. eauto.
- intros D.
pose proof Dec R V D as [q H].
exists q. intros n1 M. specialize (H n1 M).
rewrite IV. auto.
- intros *. rewrite ID.
intros [D|[-> ->]].
+ destruct (Dec R V D) as (q1 & H). exists q1.
intros n1 M1.
rewrite FV.
auto.
+ exists q. intros. rewrite FV. auto.
Qed.
End paxos.
End paxos_epr.