forked from tomhartke/knowledge-graph-from-GPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_utils.py
71 lines (57 loc) · 2.51 KB
/
basic_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import re
import json
import numpy as np
import pandas as pd
from collections import Counter
from typing import Any, Optional, Tuple, Dict, List, NamedTuple, Set
import scipy
import time
from pprint import pprint as pprint
import openai # Import the openai library directly
openai.api_key = os.getenv("OPENAI_API_KEY")
# Load your API key from an environment variable or secret management service
model_to_use = "gpt-3.5-turbo-0125"
# "gpt-3.5-turbo-0301" is more moderns
# "text-curie-001" is 10x cheaper than "text-davinci-003", but not as good
# "text-davinci-002" is faster than 3, but not necessarily worse at explaining?
# Setup interface with language model
# def gen_response(prompt='hi', max_tokens=10, temperature=0):
# response = client.chat.completions.create(model=model_to_use, prompt=prompt, temperature=temperature, max_tokens=max_tokens)
# return response
def gen_response(prompt='hi', max_tokens=10, temperature=0):
response = openai.chat.completions.create(
model=model_to_use,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=max_tokens
)
# print(response)
return response
def gen_response_text_with_backoff(prompt='hi', max_tokens=10, temperature=0):
prompt_succeeded = False
wait_time = 0.1
while not prompt_succeeded:
try:
response = gen_response(prompt, max_tokens, temperature=temperature)
prompt_succeeded = True
except openai.error.RateLimitError as e:
print('Rate limit exceeded, retrying after', wait_time, 'seconds...')
time.sleep(wait_time)
wait_time *= 2 # Exponential backoff
except Exception as e:
print('Unexpected error:', str(e), '— Retrying after', wait_time, 'seconds...')
time.sleep(wait_time)
wait_time *= 2 # Exponential backoff
response_text = response.choices[0].message.content.strip()
used_tokens = response.usage.total_tokens
return response_text, used_tokens
def get_dict_items_sorted_by_decreasing_value(_dict):
sort_inds = np.flip(np.argsort(list(_dict.values())))
sorted_keys = np.array(list(_dict.keys()))[sort_inds]
sorted_values = np.array(list(_dict.values()))[sort_inds]
return sorted_keys, sorted_values
def display_dict_sorted_by_decreasing_value(_dict, print_num=10):
sorted_keys, sorted_values = get_dict_items_sorted_by_decreasing_value(_dict)
pprint(list(zip(sorted_keys, sorted_values))[0:print_num])
# gen_response()