-
Notifications
You must be signed in to change notification settings - Fork 8
/
run_sft.py
75 lines (64 loc) · 2.37 KB
/
run_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# flake8: noqa
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trl.commands.cli_utils import SFTScriptArguments, TrlParser
from datasets import load_dataset
from transformers import AutoTokenizer
import models
from trl import (
ModelConfig,
SFTConfig,
SFTTrainer,
get_peft_config,
get_quantization_config,
get_kbit_device_map,
)
if __name__ == "__main__":
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
################
# Model init kwargs & Tokenizer
################
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
use_cache=False,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
training_args.model_init_kwargs = model_kwargs
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.pad_token = tokenizer.eos_token
################
# Dataset
################
dataset = load_dataset(args.dataset_name)
################
# Training
################
trainer = SFTTrainer(
model=model_config.model_name_or_path,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
)
trainer.train()
trainer.save_model(training_args.output_dir)