-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils.py
123 lines (98 loc) · 2.79 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from utils import *
import pytest
from AmoebaNet.operations import (none,
avg_pool_3x3,
max_pool_3x3,
max_pool_2x2,
conv_1x7_7x1,
conv_1x1,
conv_3x3,
separable_7x7_2,
separable_3x3_2,
separable_5x5_2,
dil_2_separable_5x5_2)
NORMAL_OPERATIONS = [
(1, conv_1x1),
(1, max_pool_3x3),
(1, none),
(0, conv_1x7_7x1),
(0, conv_1x1),
(0, conv_1x7_7x1),
(2, max_pool_3x3),
(2, none),
(1, avg_pool_3x3),
(5, conv_1x1),
]
REDUCTION_OPERATIONS = [
(0, max_pool_2x2),
(0, max_pool_3x3),
(2, none),
(1, conv_3x3),
(2, conv_1x7_7x1),
(2, max_pool_3x3),
(3, none),
(1, max_pool_2x2),
(2, avg_pool_3x3),
(3, conv_1x1),
]
def test_get_model():
model = get_model()
assert model is not None
diff_count = 0
i = 0
while i < len(NORMAL_OPERATIONS):
if model[1][i][1] != NORMAL_OPERATIONS[i][1]:
diff_count += 1
i += 1
while i < len(REDUCTION_OPERATIONS):
if model[2][i][1] != REDUCTION_OPERATIONS[i][1]:
diff_count += 1
i += 1
assert diff_count <= 1
def test_get_optimizer():
model = get_model()[0]
lr = 0.01
optimizer = get_optimizer(model, lr)
assert optimizer is not None
def test_get_new_operation():
current_op = avg_pool_3x3
assert get_replacement_op(current_op) is not None
def test_get_new_operation_no_duplicate():
current_op = avg_pool_3x3
for i in range(0,100):
assert current_op is not get_replacement_op(current_op)
def test_exploit_and_explore():
print("")
test_model = get_model()[0]
test_optim = get_optimizer(test_model, 0.01)
checkpoint = dict(model_state_dict=test_model.state_dict(),
optim_state_dict=test_optim.state_dict(),
normal_ops=NORMAL_OPERATIONS,
reduction_ops=REDUCTION_OPERATIONS)
torch.save(checkpoint, "checkpoints/tester")
checkpoint = dict(model_state_dict=test_model.state_dict(),
optim_state_dict=test_optim.state_dict(),
normal_ops=NORMAL_OPERATIONS,
reduction_ops=REDUCTION_OPERATIONS)
torch.save(checkpoint, "checkpoints/tester1")
if torch.cuda.is_available():
exploit_and_explore("checkpoints/tester", "checkpoints/tester1")
temp_model = torch.load("checkpoints/tester1")
normal_ops = temp_model['normal_ops']
reduction_ops = temp_model['reduction_ops']
diff_count = 0
i = 0
while i < len(NORMAL_OPERATIONS):
if normal_ops[i][1] != NORMAL_OPERATIONS[i][1]:
diff_count += 1
i += 1
while i < len(REDUCTION_OPERATIONS):
if reduction_ops[i][1] != REDUCTION_OPERATIONS[i][1]:
diff_count += 1
i += 1
assert diff_count <= 1
def test_exploit_and_explore_invalid_checkpoint():
with pytest.raises(Exception) as E:
exploit_and_explore("aaaa","aaaaaaa")
def test_convert_tuple_to_list():
assert type(convert_data_structure_list_tuple(convert_data_structure_list_tuple(NORMAL_OPERATIONS))) == type(NORMAL_OPERATIONS)