Skip to content

Latest commit

 

History

History
295 lines (262 loc) · 7.12 KB

README.md

File metadata and controls

295 lines (262 loc) · 7.12 KB

AlphaFy

AlphaFy is a Gomoku AI based on AlphaGo Zero's Algorithm. It use the same structure as AlphaGo Zero (Monte Carlo Tree Search and Residual Network). The game's board size is scalable, so you can try your algorithm on 3x3 Tic-tac-toe and then scale it to a bigger board like a 9x9 gomoku.

Requirement

  1. Python 3.6
  2. Keras

Usage

A tutorial is available in the src folder.

  1. Create a player.

      from player import Player
      # This will give you a untrained random model.
      # For a pretrained model, use:
      # fy = Player('latest')
      fy = Player()
  2. Collect data via self-playing.

     # This option turn on a rule-based AI as a guide, but it's very slow.
     # Turn it off when the AI seems to understand its goal.
     fy.enable_guide()
     # This indicate how many nodes in Monte Carlo Tree will be expanded to pick each move. 
     fy.set_thinking_depth(128)
     
     # Data will be collected after each game ended.
     fy.self_play(show_board=True)
  3. Save and load.

    # Save model and data separately.
    # It's equal to:
    # fy.save('example', override=True)
    fy.save_data('example', override=True)
    fy.save_model('example', override=True)
    
    fy.load_model('example')
    # If merge=False, it will override current data.
    fy.load_data('example', merge=False)
  4. Train the model.

    # Note that it needs a lot of data to obtain a reasonable performance.
    fy.train(epochs=5, batch_size=128)
  5. Evaluate performance.

    fy.vs_user(first_hand=True)
    
    # Or you can compare between two models.
    
    rival = Player('latest')
    fy.vs(rival)

Example

This is an example game record of the pretrain model's self-play, under the config of 512 nodes expaned each move(thinking-depth=512), guide turned off(fy.disable_guide()), 8 threads(changeable in config.py). To achieve a human-level performance, set thinking-depth to 30000 or higher.

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . . . . . . . |
 6 | . . . . . . . . . |
 5 | . . . . . . . . . |
 4 | . . . . . . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . . . . . . . |
 6 | . . . . . . . . . |
 5 | . . . . . O). . . |
 4 | . . . . . . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . . . X). . . |
 6 | . . . . . . . . . |
 5 | . . . . . O . . . |
 4 | . . . . . . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . . . X . . . |
 6 | . . . . . . . . . |
 5 | . . . . . O . . . |
 4 | . . . . O). . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X). X . . . |
 6 | . . . . . . . . . |
 5 | . . . . . O . . . |
 4 | . . . . O . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O)X . . . |
 6 | . . . . . . . . . |
 5 | . . . . . O . . . |
 4 | . . . . O . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . . . . . . |
 5 | . . . . . O . . . |
 4 | X). . . O . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . . . O). . |
 5 | . . . . . O . . . |
 4 | X . . . O . . . . |
 3 | . . . . . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . . . O . . |
 5 | . . . . . O . . . |
 4 | X . . . O . . . . |
 3 | . . . X). . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . . O)O . . |
 5 | . . . . . O . . . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . . O O . . |
 5 | . . . . . O X). . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . O)O O . . |
 5 | . . . . . O X . . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . . O O O . . |
 5 | . . . . X)O X . . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . . O)O O O . . |
 5 | . . . . X O X . . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . X)O O O O . . |
 5 | . . . . X O X . . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9

     1 2 3 4 5 6 7 8 9
   +-------------------+
 9 | . . . . . . . . . |
 8 | . . . . . . . . . |
 7 | . . . X O X . . . |
 6 | . . X O O O O O). |
 5 | . . . . X O X . . |
 4 | X . . . O . . . . |
 3 | . . . X . . . . . |
 2 | . . . . . . . . . |
 1 | . . . . . . . . . |
   +-------------------+
     1 2 3 4 5 6 7 8 9