-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathPCSR.hpp
713 lines (629 loc) · 19.2 KB
/
PCSR.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
#include <algorithm>
#include <queue>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <tuple>
#include <vector>
using namespace std;
typedef struct _node {
// beginning and end of the associated region in the edge list
uint32_t beginning; // deleted = max int
uint32_t end; // end pointer is exclusive
uint32_t num_neighbors; // number of edges with this node as source
} node_t;
// each node has an associated sentinel (max_int, offset) that gets back to its
// offset into the node array
// UINT32_MAX
//
// if value == UINT32_MAX, read it as null.
typedef struct _edge {
uint32_t dest; // destination of this edge in the graph, MAX_INT if this is a
// sentinel
uint32_t
value; // edge value of zero means it a null since we don't store 0 edges
} edge_t;
typedef struct edge_list {
int N;
int H;
int logN;
edge_t *items;
} edge_list_t;
// find index of first 1-bit (least significant bit)
static inline int bsf_word(int word) {
int result;
__asm__ volatile("bsf %1, %0" : "=r"(result) : "r"(word));
return result;
}
static inline int bsr_word(int word) {
int result;
__asm__ volatile("bsr %1, %0" : "=r"(result) : "r"(word));
return result;
}
typedef struct _pair_int {
int x; // length in array
int y; // depth
} pair_int;
typedef struct _pair_double {
double x;
double y;
} pair_double;
int isPowerOfTwo(int x) { return ((x != 0) && !(x & (x - 1))); }
// same as find_leaf, but does it for any level in the tree
// index: index in array
// len: length of sub-level.
int find_node(int index, int len) { return (index / len) * len; }
class PCSR {
public:
// data members
std::vector<node_t> nodes;
edge_list_t edges;
PCSR(uint32_t init_n);
~PCSR();
void double_list();
void half_list();
int slide_right(int index);
void slide_left(int index);
void redistribute(int index, int len);
void fix_sentinel(int32_t node_index, int in);
void print_array();
uint32_t find_value(uint32_t src, uint32_t dest);
vector<uint32_t>
sparse_matrix_vector_multiplication(std::vector<uint32_t> const &v);
void print_graph();
void add_node();
void add_edge(uint32_t src, uint32_t dest, uint32_t value);
void add_edge_update(uint32_t src, uint32_t dest, uint32_t value);
uint32_t insert(uint32_t index, edge_t elem, uint32_t src);
uint64_t get_size();
uint64_t get_n() const;
vector<float> pagerank(std::vector<float> const &node_values);
vector<uint32_t> bfs(uint32_t start_node);
vector<tuple<uint32_t, uint32_t, uint32_t>> get_edges();
void clear();
};
// null overrides sentinel
// e.g. in rebalance, we check if an edge is null
// first before copying it into temp, then fix the sentinels.
bool is_sentinel(edge_t e) {
return e.dest == UINT32_MAX || e.value == UINT32_MAX;
}
bool is_null(edge_t e) { return e.value == 0; }
void PCSR::clear() {
int n = 0;
free(edges.items);
edges.N = 2 << bsr_word(n);
edges.logN = (1 << bsr_word(bsr_word(edges.N) + 1));
edges.H = bsr_word(edges.N / edges.logN);
}
vector<float> PCSR::pagerank(std::vector<float> const &node_values) {
uint64_t n = get_n();
vector<float> output(n, 0);
float *output_p = output.data();
for (int i = 0; i < n; i++) {
uint32_t start = nodes[i].beginning;
uint32_t end = nodes[i].end;
// get neighbors
// start at +1 for the sentinel
float contrib = (node_values[i] / nodes[i].num_neighbors);
for (int j = start + 1; j < end; j++) {
if (!is_null(edges.items[j])) {
output_p[edges.items[j].dest] += contrib;
}
}
}
return output;
}
vector<tuple<uint32_t, uint32_t, uint32_t>> PCSR::get_edges() {
uint64_t n = get_n();
vector<tuple<uint32_t, uint32_t, uint32_t>> output;
for (int i = 0; i < n; i++) {
uint32_t start = nodes[i].beginning;
uint32_t end = nodes[i].end;
for (int j = start + 1; j < end; j++) {
if (!is_null(edges.items[j])) {
output.push_back(
make_tuple(i, edges.items[j].dest, edges.items[j].value));
}
}
}
return output;
}
vector<uint32_t> PCSR::bfs(uint32_t start_node) {
uint64_t n = get_n();
vector<uint32_t> out(n, UINT32_MAX);
queue<uint32_t> next;
next.push(start_node);
out[start_node] = 0;
while (!next.empty()) {
uint32_t active = next.front();
next.pop();
uint32_t start = nodes[active].beginning;
uint32_t end = nodes[active].end;
// get neighbors
// start at +1 for the sentinel
for (int j = start + 1; j < end; j++) {
if (!is_null(edges.items[j]) && out[edges.items[j].dest] == UINT32_MAX) {
next.push(edges.items[j].dest);
out[edges.items[j].dest] = out[active] + 1;
}
}
}
return out;
}
uint64_t PCSR::get_n() const { return nodes.size(); }
uint64_t PCSR::get_size() {
uint64_t size = nodes.capacity() * sizeof(node_t);
size += edges.N * sizeof(edge_t);
return size;
}
void PCSR::print_array() {
for (int i = 0; i < edges.N; i++) {
if (is_null(edges.items[i])) {
printf("%d-x ", i);
} else if (is_sentinel(edges.items[i])) {
uint32_t value = edges.items[i].value;
if (value == UINT32_MAX) {
value = 0;
}
printf("\n%d-s(%u):(%d, %d) ", i, value, nodes[value].beginning,
nodes[value].end);
} else {
printf("%d-(%d, %u) ", i, edges.items[i].dest, edges.items[i].value);
}
}
printf("\n\n");
}
// get density of a node
double get_density(edge_list_t *list, int index, int len) {
int full = 0;
for (int i = index; i < index + len; i++) {
full += (!is_null(list->items[i]));
}
double full_d = (double)full;
return full_d / len;
}
// height of this node in the tree
int get_depth(edge_list_t *list, int len) { return bsr_word(list->N / len); }
// get parent of this node in the tree
pair_int get_parent(edge_list_t *list, int index, int len) {
int parent_len = len * 2;
int depth = get_depth(list, len);
pair_int pair;
pair.x = parent_len;
pair.y = depth;
return pair;
}
// when adjusting the list size, make sure you're still in the
// density bound
pair_double density_bound(edge_list_t *list, int depth) {
pair_double pair;
// between 1/4 and 1/2
// pair.x = 1.0/2.0 - (( .25*depth)/list->H);
// between 1/8 and 1/4
pair.x = 1.0 / 4.0 - ((.125 * depth) / list->H);
pair.y = 3.0 / 4.0 + ((.25 * depth) / list->H);
return pair;
}
// fix pointer from node to moved sentinel
void PCSR::fix_sentinel(int32_t node_index, int in) {
nodes[node_index].beginning = in;
if (node_index > 0) {
nodes[node_index - 1].end = in;
}
if (node_index == nodes.size() - 1) {
nodes[node_index].end = edges.N - 1;
}
}
// Evenly redistribute elements in the ofm, given a range to look into
// index: starting position in ofm structure
// len: area to redistribute
void PCSR::redistribute(int index, int len) {
// printf("REDISTRIBUTE: \n");
// print_array();
// std::vector<edge_t> space(len); //
edge_t *space = (edge_t *)malloc(len * sizeof(*(edges.items)));
int j = 0;
// move all items in ofm in the range into
// a temp array
for (int i = index; i < index + len; i++) {
space[j] = edges.items[i];
// counting non-null edges
j += (!is_null(edges.items[i]));
// setting section to null
edges.items[i].value = 0;
edges.items[i].dest = 0;
}
// evenly redistribute for a uniform density
double index_d = index;
double step = ((double)len) / j;
for (int i = 0; i < j; i++) {
int in = index_d;
edges.items[in] = space[i];
if (is_sentinel(space[i])) {
// fixing pointer of node that goes to this sentinel
uint32_t node_index = space[i].value;
if (node_index == UINT32_MAX) {
node_index = 0;
}
fix_sentinel(node_index, in);
}
index_d += step;
}
free(space);
}
void PCSR::double_list() {
edges.N *= 2;
edges.logN = (1 << bsr_word(bsr_word(edges.N) + 1));
edges.H = bsr_word(edges.N / edges.logN);
edges.items =
(edge_t *)realloc(edges.items, edges.N * sizeof(*(edges.items)));
for (int i = edges.N / 2; i < edges.N; i++) {
edges.items[i].value = 0; // setting second half to null
edges.items[i].dest = 0; // setting second half to null
}
redistribute(0, edges.N);
}
void PCSR::half_list() {
edges.N /= 2;
edges.logN = (1 << bsr_word(bsr_word(edges.N) + 1));
edges.H = bsr_word(edges.N / edges.logN);
edge_t *new_array = (edge_t *)malloc(edges.N * sizeof(*(edges.items)));
int j = 0;
for (int i = 0; i < edges.N * 2; i++) {
if (!is_null(edges.items[i])) {
new_array[j++] = edges.items[i];
}
}
free(edges.items);
edges.items = new_array;
redistribute(0, edges.N);
}
// index is the beginning of the sequence that you want to slide right.
// notice that slide right does not not null the current spot.
// this is ok because we will be putting something in the current index
// after sliding everything to the right.
int PCSR::slide_right(int index) {
int rval = 0;
edge_t el = edges.items[index];
edges.items[index].dest = 0;
edges.items[index].value = 0;
index++;
while (index < edges.N && !is_null(edges.items[index])) {
edge_t temp = edges.items[index];
edges.items[index] = el;
if (!is_null(el) && is_sentinel(el)) {
// fixing pointer of node that goes to this sentinel
uint32_t node_index = el.value;
if (node_index == UINT32_MAX) {
node_index = 0;
}
fix_sentinel(node_index, index);
}
el = temp;
index++;
}
if (!is_null(el) && is_sentinel(el)) {
// fixing pointer of node that goes to this sentinel
uint32_t node_index = el.value;
if (node_index == UINT32_MAX) {
node_index = 0;
}
fix_sentinel(node_index, index);
}
// TODO There might be an issue with this going of the end sometimes
if (index == edges.N) {
index--;
slide_left(index);
rval = -1;
printf("slide off the end on the right, should be rare\n");
}
edges.items[index] = el;
return rval;
}
// only called in slide right if it was going to go off the edge
// since it can't be full this doesn't need to worry about going off the other
// end
void PCSR::slide_left(int index) {
edge_t el = edges.items[index];
edges.items[index].dest = 0;
edges.items[index].value = 0;
index--;
while (index >= 0 && !is_null(edges.items[index])) {
edge_t temp = edges.items[index];
edges.items[index] = el;
if (!is_null(el) && is_sentinel(el)) {
// fixing pointer of node that goes to this sentinel
uint32_t node_index = el.value;
if (node_index == UINT32_MAX) {
node_index = 0;
}
fix_sentinel(node_index, index);
}
el = temp;
index--;
}
if (index == -1) {
double_list();
slide_right(0);
index = 0;
}
if (!is_null(el) && is_sentinel(el)) {
// fixing pointer of node that goes to this sentinel
uint32_t node_index = el.value;
if (node_index == UINT32_MAX) {
node_index = 0;
}
fix_sentinel(node_index, index);
}
edges.items[index] = el;
}
// given index, return the starting index of the leaf it is in
int find_leaf(edge_list_t *list, int index) {
return (index / list->logN) * list->logN;
}
// true if e1, e2 are equals
bool edge_equals(edge_t e1, edge_t e2) {
return e1.dest == e2.dest && e1.value == e2.value;
}
// return index of the edge elem
// takes in edge list and place to start looking
uint32_t find_elem_pointer(edge_list_t *list, uint32_t index, edge_t elem) {
edge_t item = list->items[index];
while (!edge_equals(item, elem)) {
item = list->items[++index];
}
return index;
}
// return index of the edge elem
// takes in edge list and place to start looking
// looks in reverse
uint32_t find_elem_pointer_reverse(edge_list_t *list, uint32_t index,
edge_t elem) {
edge_t item = list->items[index];
while (!edge_equals(item, elem)) {
item = list->items[--index];
}
return index;
}
// important: make sure start, end don't include sentinels
// returns the index of the smallest element bigger than you in the range
// [start, end) if no such element is found, returns end (because insert shifts
// everything to the right)
uint32_t binary_search(edge_list_t *list, edge_t *elem, uint32_t start,
uint32_t end) {
while (start + 1 < end) {
uint32_t mid = (start + end) / 2;
edge_t item = list->items[mid];
uint32_t change = 1;
uint32_t check = mid;
bool flag = true;
while (is_null(item) && flag) {
flag = false;
check = mid + change;
if (check < end) {
flag = true;
if (check <= end) {
item = list->items[check];
if (!is_null(item)) {
break;
} else if (check == end) {
break;
}
}
}
check = mid - change;
if (check >= start) {
flag = true;
item = list->items[check];
}
change++;
}
if (is_null(item) || start == check || end == check) {
if (!is_null(item) && start == check && elem->dest <= item.dest) {
return check;
}
return mid;
}
// if we found it, return
if (elem->dest == item.dest) {
return check;
} else if (elem->dest < item.dest) {
end =
check; // if the searched for item is less than current item, set end
} else {
start = check;
// otherwise, searched for item is more than current and we set start
}
}
if (end < start) {
start = end;
}
// handling the case where there is one element left
// if you are leq, return start (index where elt is)
// otherwise, return end (no element greater than you in the range)
// printf("start = %d, end = %d, n = %d\n", start,end, list->N);
if (elem->dest <= list->items[start].dest && !is_null(list->items[start])) {
return start;
}
return end;
}
uint32_t PCSR::find_value(uint32_t src, uint32_t dest) {
edge_t e;
e.value = 0;
e.dest = dest;
uint32_t loc =
binary_search(&edges, &e, nodes[src].beginning + 1, nodes[src].end);
if (!is_null(edges.items[loc]) && edges.items[loc].dest == dest) {
return edges.items[loc].value;
} else {
return 0;
}
}
// NOTE: potentially don't need to return the index of the element that was
// inserted? insert elem at index returns index that the element went to (which
// may not be the same one that you put it at)
uint32_t PCSR::insert(uint32_t index, edge_t elem, uint32_t src) {
int node_index = find_leaf(&edges, index);
// printf("node_index = %d\n", node_index);
int level = edges.H;
int len = edges.logN;
// always deposit on the left
if (is_null(edges.items[index])) {
edges.items[index].value = elem.value;
edges.items[index].dest = elem.dest;
} else {
// if the edge already exists in the graph, update its value
// do not make another edge
// return index of the edge that already exists
if (!is_sentinel(elem) && edges.items[index].dest == elem.dest) {
edges.items[index].value = elem.value;
return index;
}
if (index == edges.N - 1) {
// when adding to the end double then add edge
double_list();
node_t node = nodes[src];
uint32_t loc_to_add =
binary_search(&edges, &elem, node.beginning + 1, node.end);
return insert(loc_to_add, elem, src);
} else {
if (slide_right(index) == -1) {
index -= 1;
slide_left(index);
}
}
edges.items[index].value = elem.value;
edges.items[index].dest = elem.dest;
}
double density = get_density(&edges, node_index, len);
// spill over into next level up, node is completely full.
if (density == 1) {
node_index = find_node(node_index, len * 2);
redistribute(node_index, len * 2);
} else {
// makes the last slot in a section empty so you can always slide right
redistribute(node_index, len);
}
// get density of the leaf you are in
pair_double density_b = density_bound(&edges, level);
density = get_density(&edges, node_index, len);
// while density too high, go up the implicit tree
// go up to the biggest node above the density bound
while (density >= density_b.y) {
len *= 2;
if (len <= edges.N) {
level--;
node_index = find_node(node_index, len);
density_b = density_bound(&edges, level);
density = get_density(&edges, node_index, len);
} else {
// if you reach the root, double the list
double_list();
// search from the beginning because list was doubled
return find_elem_pointer(&edges, 0, elem);
}
}
redistribute(node_index, len);
return find_elem_pointer(&edges, node_index, elem);
}
// find index of edge
uint32_t find_index(edge_list_t *list, edge_t *elem_pointer) {
edge_t *array_start = list->items;
uint32_t index = (elem_pointer - array_start);
return index;
}
std::vector<uint32_t>
PCSR::sparse_matrix_vector_multiplication(std::vector<uint32_t> const &v) {
std::vector<uint32_t> result(nodes.size(), 0);
int num_vertices = nodes.size();
for (int i = 0; i < num_vertices; i++) {
// +1 to avoid sentinel
for (uint32_t j = nodes[i].beginning + 1; j < nodes[i].end; j++) {
result[i] += edges.items[j].value * v[edges.items[j].dest];
}
}
return result;
}
void PCSR::print_graph() {
int num_vertices = nodes.size();
for (int i = 0; i < num_vertices; i++) {
// +1 to avoid sentinel
int matrix_index = 0;
for (uint32_t j = nodes[i].beginning + 1; j < nodes[i].end; j++) {
if (!is_null(edges.items[j])) {
while (matrix_index < edges.items[j].dest) {
printf("000 ");
matrix_index++;
}
printf("%03d ", edges.items[j].value);
matrix_index++;
}
}
for (uint32_t j = matrix_index; j < num_vertices; j++) {
printf("000 ");
}
printf("\n");
}
}
// add a node to the graph
void PCSR::add_node() {
node_t node;
int len = nodes.size();
edge_t sentinel;
sentinel.dest = UINT32_MAX; // placeholder
sentinel.value = len; // back pointer
if (len > 0) {
node.beginning = nodes[len - 1].end;
node.end = node.beginning + 1;
} else {
node.beginning = 0;
node.end = 1;
sentinel.value = UINT32_MAX;
}
node.num_neighbors = 0;
nodes.push_back(node);
insert(node.beginning, sentinel, nodes.size() - 1);
}
void PCSR::add_edge(uint32_t src, uint32_t dest, uint32_t value) {
if (value != 0) {
node_t node = nodes[src];
nodes[src].num_neighbors++;
edge_t e;
e.dest = dest;
e.value = value;
uint32_t loc_to_add =
binary_search(&edges, &e, node.beginning + 1, node.end);
insert(loc_to_add, e, src);
}
}
void PCSR::add_edge_update(uint32_t src, uint32_t dest, uint32_t value) {
if (value != 0) {
node_t node = nodes[src];
edge_t e;
e.dest = dest;
e.value = value;
uint32_t loc_to_add =
binary_search(&edges, &e, node.beginning + 1, node.end);
if (edges.items[loc_to_add].dest == dest) {
edges.items[loc_to_add].value = value;
return;
}
nodes[src].num_neighbors++;
insert(loc_to_add, e, src);
}
}
PCSR::PCSR(uint32_t init_n) {
edges.N = 2 << bsr_word(init_n);
edges.logN = (1 << bsr_word(bsr_word(edges.N) + 1));
edges.H = bsr_word(edges.N / edges.logN);
edges.items = (edge_t *)malloc(edges.N * sizeof(*(edges.items)));
for (int i = 0; i < edges.N; i++) {
edges.items[i].value = 0;
edges.items[i].dest = 0;
}
for (int i = 0; i < init_n; i++) {
add_node();
}
}
PCSR::~PCSR() { free(edges.items); }