-
Notifications
You must be signed in to change notification settings - Fork 58
/
demo_DSIFN.py
80 lines (54 loc) · 2.63 KB
/
demo_DSIFN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from argparse import ArgumentParser
import utils
import torch
from models.basic_model import CDEvaluator
import os
"""
quick start
sample files in ./samples
save prediction files in the ./samples/predict
"""
def get_args():
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--project_name', default='CD_ChangeFormerV6_DSIFN_b16_lr0.00006_adamw_train_test_200_linear_ce_multi_train_True_multi_infer_False_shuffle_AB_False_embed_dim_256', type=str)
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--checkpoint_root', default='/media/lidan/ssd2/ChangeFormer/checkpoints/', type=str)
parser.add_argument('--output_folder', default='samples_DSIFN/predict_ChangeFormerV6', type=str)
# data
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--dataset', default='CDDataset', type=str)
parser.add_argument('--data_name', default='quick_start_DSIFN', type=str)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--split', default="demo", type=str)
parser.add_argument('--img_size', default=256, type=int)
# model
parser.add_argument('--n_class', default=2, type=int)
parser.add_argument('--embed_dim', default=256, type=int)
parser.add_argument('--net_G', default='ChangeFormerV6', type=str,
help='ChangeFormerV6 | CD_SiamUnet_diff | SiamUnet_conc | Unet | DTCDSCN | base_resnet18 | base_transformer_pos_s4_dd8 | base_transformer_pos_s4_dd8_dedim8|')
parser.add_argument('--checkpoint_name', default='best_ckpt.pt', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
utils.get_device(args)
device = torch.device("cuda:%s" % args.gpu_ids[0]
if torch.cuda.is_available() and len(args.gpu_ids)>0
else "cpu")
args.checkpoint_dir = os.path.join(args.checkpoint_root, args.project_name)
os.makedirs(args.output_folder, exist_ok=True)
log_path = os.path.join(args.output_folder, 'log_vis.txt')
data_loader = utils.get_loader(args.data_name, img_size=args.img_size,
batch_size=args.batch_size,
split=args.split, is_train=False)
model = CDEvaluator(args)
model.load_checkpoint(args.checkpoint_name)
model.eval()
for i, batch in enumerate(data_loader):
name = batch['name']
print('process: %s' % name)
score_map = model._forward_pass(batch)
model._save_predictions()