-
Notifications
You must be signed in to change notification settings - Fork 3
/
misc.tex
702 lines (668 loc) · 21.9 KB
/
misc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
\chapter{Miscellaneous}
\begin{parsec}%
\begin{point}{Theorem}%
For an ncp-map $\varphi\colon \scrA\to\scrB$ between von Neumann algebras
the following are equivalent.
\begin{enumerate}
\item
\label{extreme-1}
$\varphi$ is extreme among
ncp-maps $f\colon \scrA\to\scrB$ with~$f(1)=\varphi(1)$.
\item
\label{extreme-2}
The map $T\mapsto \left< 1\otimes 1,T\,1\otimes 1\right>$
from~$\scrB^a(\scrA\otimes_\varphi\scrB)$
to~$\scrB$ is injective on~$\varrho(\scrA)^\square$.
\end{enumerate}
\begin{point}{Proof}%
Based on Lemma 1.4.6~of ``Subalgebras of $C^*$-algebras''.
Assume~\ref{extreme-2}.
Suppose that $\varphi\equiv t \psi_1+t^\perp \psi_2$
for ncp-maps $\psi_1,\psi_2\colon \scrA\to\scrB$
with~$\psi_1(1)=\varphi(1)=\psi_2(1)$
and~$t \in(0,1)$.
We must show that~$\psi_1=\psi_2$.
Since~$t \psi_1\leq \varphi$,
there is (by ``Paschke's correspondence'')
an operator $T\in \varrho(\scrA)^\square$
with $0\leq T\leq 1$
and $t\psi_1(a)=\left<1\otimes 1,T \varrho(a)\, 1\otimes 1\right>$
for all~$a\in\scrA$,
so that $\left<1\otimes 1, T \,1\otimes 1\right>
= t\psi_1(1) = t\varphi(1)= t \left<1\otimes 1,1\otimes 1\right>
= \left<1\otimes 1, t1\otimes 1\right>$,
which entails that~$t=T$,
because~$t$ and~$T$ are from~$\varrho(\scrA)^\square$
on which~$\left<1\otimes 1,(\,\cdot\,)1\otimes 1\right>$
is injective.
But then~$t\psi_1=\left<1\otimes 1,t \varrho(\,\cdot\,)\,1\otimes 1\right>
=t \varphi$,
so that $\varphi = t\psi_1+t^\perp \psi_2
= t \varphi+t^\perp\psi_2$,
implying that~$t^\perp \psi_2= t^\perp \varphi$,
and so~$\psi_1=\psi_2=\varphi$.
Assume~\ref{extreme-1}.
Let~$h\colon \varrho(\scrA)^\square\to \scrB$
be the ncp-map given by~$h(S)=\left<1\otimes 1,S1\otimes 1\right>$,
which we must prove to be injective.
It suffices to show that~$h$ is injective on self-adjoint elements.
Let~$S$ be a self-adjoint element of~$\varrho(\scrA)^\square$
with $h(S)=0$;
we must show that~$S=0$.
Define $A:=\frac{1}{4}+\frac{1}{2}\|S\|^{-1}S$
so that~$\frac{1}{4}\leq A\leq \frac{3}{4}$.
Note that~$h(A)=\frac{1}{4}$ and
so $\varphi_A(1)=h(A)=\frac{1}{4}$
and similarly~$\varphi_{A^\perp}(1)=\frac{3}{4}$.
Since clearly
$\varphi_A+\varphi_{A^\perp} = \varphi$
we have $\frac{1}{4}(4\varphi_A)\,+\,\frac{3}{4}(\frac{4}{3}\varphi_{A^\perp})
\,=\,\varphi$,
and so~$4\varphi_A=\frac{4}{3}\varphi_{A^\perp}=\varphi$
since~$\varphi$ is extreme.
Since then~$\varphi_{4A}=\varphi_{1}$, we get~$4A=1$,
and so~$1=4A=1+2\|S\|^{-1}S$
implying~$S=0$,
and thus that~$h$ is injective.
\end{point}
\end{point}
\end{parsec}
\begin{parsec}%
\begin{point}%
Parsec about commutative $C^*$-algebras:
\end{point}
\begin{point}[ccstar-proj]{Theorem}%
The projections~$\Proj(\scrA)$ of a commutative $C^*$-algebra~$\scrA$
form a Boolean algebra.
If~$\scrA$ is monotone complete,
then~$\Proj(\scrA)$ is a complete Boolean algebra.
\end{point}
\end{parsec}
\begin{parsec}%
\begin{point}%
Let us now turn to quotients of von Neumann algebras.
Recall that given a norm closed two-sided ideal~$\scrD$
of a $C^*$-algebra $\scrA$
we can form the quotient $\scrA/\scrD$,
(which is again a $C^*$-algebra),
and the quotient map $q\colon \scrA\to \scrA/\scrD$
which is a \textsc{miu}-map.
If~$\scrA$ is a von Neumann algebra,
then~$\scrA/\scrD$ might not be a von Neumann algebra,
either because~$\scrA/\scrD$ is not be monotone complete
(see~\sref{vn-quotient-not-monotone-complete}),
or because~$\scrA/\scrD$ does not have a separating set of normal states
(see~\TODO{}).
However, if~$\scrD$ is ultraweakly closed,
then~$\scrA/\scrD$ is a von Neumann algebra,
as one might have suspected.
To prove this,
we need the somewhat surprising
fact that every ultraweakly closed
ideal~$\scrD$ is of the form $\scrD\equiv c\scrA$,
where~$c$ is a central projection~$c$ of~$\scrA$.
(The quotient~$\scrA/c\scrA$ is then simply~$c^\perp\scrA$.)
\TODO{connection between uw-closed ideals and central projections}
\TODO{universal property for \textsc{n(c)p(s)(u)}-maps}
\end{point}
\begin{point}[vn-quotient-not-monotone-complete]{Example}%
The quotient of a von Neumann algebra
by an closed ideal
need not be a von Neumann algebra:
we will show that $\ell^\infty/c_0$
is not monotone complete,
where~$\ell^\infty$ is the von Neumann algebra
of bounded sequences,
and~$c_0\subseteq \ell^\infty$
is the norm closed ideal of
sequences which converge to~$0$.
By~\sref{ccstar-proj}
it suffices to show that the Boolean algebra~$\Proj(\ell^\infty/c_0)$
of projections of~$\ell^\infty/c_0$ is not complete.
\begin{point}%
We claim that $\Proj(\ell^\infty/c_0)$
is isomorphic to the Boolean algebra
$\wp(\N)/\wp_{fin}(\N)$
of subsets of~$\N$ modulo
the filter~$\wp_{fin}(\N)$ of finite subsets.
It is easy to see that the assignment $A\mapsto [\mathbf{1}_A]_{c_0}$
(where $\mathbf{1}_A$ is the indicator function of~$A$)
gives a Boolean algebra homomorphism
$f\colon \wp(\N)\to \Proj(\ell^\infty/c_0)$,
that the kernel of~$f$
is $\wp_{fin}(\N)$
(because for $A\subseteq \N$
we have $\mathbf{1}_A\in c_0$ iff $A$ is finite).
It remains to be shown that~$f$ is surjective,
which requires some fiddling.
Let~$\alpha\in \ell^\infty$
be
such that $[\alpha]_{c_0}$ is a projection in $\ell^\infty/c_0$.
We claim that
$\mathbf{1}_A - \alpha \in c_0$ (and so $\alpha=f(A)$)
for some~$A\subseteq \N$.
Note that since $[\alpha]_{c_0}$ is self-adjoint,
we have $[\alpha]_{c_0}=(\,[\alpha]_{c_0}\,)_\R = [\,\alpha_\R\,]_{c_0}$,
and so we may assume without loss of generality
that~$\alpha$ is self-adjoint
(replacing $\alpha$ by $\alpha_\R$ is necessary).
Define $A=\{n\in\N\colon \left|1-\alpha(n)\right|<\frac{1}{2}\}$.
Let~$\varepsilon>0$ with $\varepsilon<\nicefrac{1}{2}$ be given.
We must find~$N\in\N$ with
$\left| \mathbf{1}_A(n)-\alpha(n)\right|\leq \varepsilon$
for all~$n\geq N$.
Since~$[\alpha]_{c_0}$ is a projection,
$\alpha-\alpha^2\in c_0$,
and so
there is~$N\in \N$
with $\left|\alpha(n)\right| \,\left| 1-\alpha(n)\right|
\,\equiv\, \left| \alpha(n) - \alpha(n)^2 \right| \leq
\nicefrac{1}{2}\,\varepsilon < \nicefrac{1}{4}$
for all~$n\geq N$.
Let~$n\geq N$ be given.
Note that either
$\left|1-\alpha(n)\right|\geq \nicefrac{1}{2}$
or
$\left|\alpha(n)\right|\geq \nicefrac{1}{2}$.
If~$\left|1-\alpha(n)\right|\geq\nicefrac{1}{2}$,
then $\mathbf{1}_A(n)=0$
(by definition of~$A$),
and so $\left|\mathbf{1}_A(n)-\alpha(n)\right|\equiv \left|\alpha(n)\right|
\leq 2 \,\left|\alpha(n)\right|\,\left| 1-\alpha(n)\right|
\leq \varepsilon$.
On the other hand,
if $\left|\alpha(n)\right| \geq \nicefrac{1}{2}$,
then $\left|1-\alpha(n)\right| < \nicefrac{1}{2}$
(because otherwise $\left|\alpha(n)\right|\left|1-\alpha(n)\right|
\geq \nicefrac{1}{4}$),
so $\mathbf{1}_A(n)=1$,
and thus
$\left|\mathbf{1}_A(n)-\alpha(n)\right|
\equiv \left|1-\alpha(n)\right|
\leq 2 \left|\alpha(n)\right|\left|1-\alpha(n)\right|
\leq \varepsilon$.
Hence $\mathbf{1}_A - \alpha \in c_0$,
and so~$f$ is surjective.
It follows that $\Proj(\ell^\infty/c_0)$
is isomorphic to $\wp(\N)/\wp_{fin}(\N)$.
\end{point}
\begin{point}%
We claim that the Boolean algebra~$\wp(\N)/\wp_{fin}(\N)$
is not complete.
To see this,
find a partition of~$\N$ into infinite subsets
$A_1,A_2,\dotsc$.
We claim that~$A_1,A_2,\dotsc$ has no supremum in~$\wp(\N)/\wp_{fin}(\N)$
because there is no minimal upper bound.
Indeed,
let~$A$ be an upper bound of~$A_1,A_2,\dotsc$ in~$\wp(\N)/\wp_{fin}(\N)$,
that is, $A_n\backslash A$ is finite for every~$n$;
we will define an upper bound~$A'$ of $A_1,A_2,\dotsc$
which is strictly below~$A$ in~$\wp(\N)/\wp_{fin}(\N)$.
Since~$A_n$ is infinite,
and~$A_n\backslash A$ is finite,
we can pick $a_n\in A_n\cap A$ for each~$n$.
Then~$A':=A \backslash \{a_1,a_2,a_3,\dotsc\}$
is an upper bound for~$A_1,A_2,\dotsc$,
because $A_n\backslash A' = (A_n\backslash A)\cup\{a_n\}$ is finite
for each~$n$,
and~$A'$ is strictly below~$A$ in~$\wp(\N)/\wp_{fin}(\N)$,
because $A'\backslash A$ is infinite.
Hence~$\wp(\N)/\wp_{fin}(\N)$
is not complete.
\end{point}
\begin{point}%
\TODO{connection with $\beta\N\backslash\N$
being non-Stonean.}
\end{point}
\end{point}
\end{parsec}
\begin{parsec}%
\begin{point}%
We will construct the left adjoint
to the inclusion $U\colon \cW{nmiu}\longrightarrow \cW{npu}$
(see~\sref{cw-giry}),
which
is perhaps to commutative von Neumann algebras,
what the Giry monad is to measure spaces,
and the Radon monad is to compact Hausdorff spaces.
We'll first find a left adjoint to $\cW{nmiu}\longrightarrow \cW{pu}$,
and then modify it
to the left adjoint to $\cW{nmiu}\longrightarrow \cW{npu}$
using~\sref{make-pu-map-normal}.
\end{point}
\begin{point}[make-pu-map-normal]{Lemma}%
Let~$f\colon \scrA\to\scrB$
be a \textsc{pu}-map between
von Neumann algebras.
Let~$\scrD$ be the ultraweakly closed ideal of~$\scrB$
generated by
\begin{equation*}
\textstyle
\scrD' \ :=\ \{\ f(\bigvee D)-\bigvee_{d\in D}f(d)\colon \,
D\subseteq \scrA\text{ is directed and bounded}\ \}.
\end{equation*}
Let~$q\colon \scrB\to \scrB/\scrD$ be the quotient
map (see \TODO{paragraph on quotients}).
Then~$q\circ f$ is normal.
Moreover,
for every von Neumann algebra~$\scrC$
and \textsc{nmiu}-map $g\colon \scrB\to \scrC$
such that~$g\circ f$ is normal,
there is a unique \textsc{nmiu}-map $h\colon \scrB/\scrD\to \scrC$
such that $g=h \circ q$.
\begin{point}{Proof}%
Since for every bounded and directed~$D\subseteq \scrA$
we have
$q(f(\bigvee D)) - \bigvee_{d\in D}q(f(d))
\,=\, q(\ f(\bigvee D)-\bigvee_{d\in D}f(d)\ ) \,=\, 0$
by definition of~$\scrD$,
we see that~$q\circ f$ is normal.
\end{point}
\begin{point}%
Let~$g\colon \scrB\to \scrC$ be an \textsc{nmiu}-map
such that $g\circ f$ is normal.
Since for every bounded directed subset~$D$ of~$\scrA$
we have $g(\,f(\bigvee D)-\bigvee_{d\in D}f(d)\,)=0$,
we see that~$\scrD'$ is a subset of $\ker(g)$, the kernel of~$g$,
which is an ultraweakly closed ideal of~$\scrB$.
Hence $\scrD\subseteq \ker(g)$ by definition of~$\scrD$.
Then by~\TODO{universal prop.~of quotients}
there is a unique \textsc{nmiu}-map $h\colon \scrB/\scrD\to \scrC$
such that $g=h\circ q$.\qed
\end{point}
\end{point}
\begin{point}[cw-giry]{Theorem}%
Let~$\scrA$ be a von Neumann algebra.
Let~$\eta\colon\scrA\to (\Cont\Stat\scrA)^{**}$
be universal arrow from~$\scrA$ to
the inclusion $\cW{nmiu}\longrightarrow \cW{pu}$
from~\TODO{add}.
Let~$\scrD$ and $q\colon (\Cont\Stat\scrA)^{**}
\longrightarrow (\Cont\Stat\scrA)^{**}/\scrD$
be as in~\sref{make-pu-map-normal}
(taking $f:=\eta$).
Then~$q\circ \eta$ is a universal arrow from~$\scrA$
to the inclusion $\cW{nmiu}\longrightarrow \cW{npu}$.
\begin{point}{Proof}%
Since~$q\circ \eta$ is normal, $q\circ \eta$ is an arrow in
$\cW{npu}$.
Let~$\scrB$ be a von Neumann algebra,
and let~$f\colon \scrA\to \scrB$
be a \textsc{npu}-map.
We must show that there is a unique \textsc{nmiu}-map
$g\colon
(\Cont\Stat\scrA)^{**}/\scrD \longrightarrow \scrB$
such that~$g\circ q\circ \eta = f$.
\begin{point}{Existence}
Since~$g$ is also just a \textsc{pu}-map,
there is (by the universal property of~$\eta$)
a unique \textsc{nmiu}-map $g'\colon
(\Cont\Stat\scrA)^{**} \longrightarrow \scrB$
such that $f=g'\circ \eta$.
But since~$f\equiv g'\circ \eta$ is also normal,
there is (by the universal property of~$q$)
a unique \textsc{nmiu}-map $g\colon
(\Cont\Stat\scrA)^{**}/\scrD \longrightarrow \scrB$
such that $g'=g\circ q$.
Hence $f=g\circ q \circ \eta$.
\end{point}
\begin{point}{Uniqueness}%
Let~$g_1,g_2\colon
(\Cont\Stat\scrA)^{**}/\scrD \longrightarrow \scrB$
be \textsc{nmiu}-maps
such that $g_1\circ q\circ \eta = g_2 \circ q \circ \eta$.
We must show that~$g_1=g_2$.
Since~$g_1\circ q \circ \eta = g_2 \circ q \circ \eta$,
we get $g_1\circ q = g_2 \circ q$ by the universal property of~$\eta$.
This in turn implies that~$g_1=g_2$ by the universal property of~$q$.\qed
\end{point}
\end{point}
\end{point}
\end{parsec}
\section{Hereditarily Central}
\begin{parsec}%
\begin{point}{Definition}%
Let~$\scrA$ be a von Neumann algebra.
\begin{enumerate}
\item
$c\in \scrA$
is called \Define{hereditarily central}
if~$ca$ is central for all~$a\in\scrA$.
\item
The set of hereditarily central elements of~$\scrA$
is denoted by~$\hZ(\scrA)$.
\end{enumerate}
\end{point}
\begin{point}{Lemma}%
Let~$c$ be a central element of a von Neumann algebra.\\
Then~$c$ is hereditarily central
iff~$c\scrA$ is Abelian.
\begin{point}{Proof}%
If~$c$ is hereditarily central,
then all elements of~$c\scrA$
are central,
and so~$c\scrA$ is Abelian.
For the other direction,
suppose that~$c\scrA$ is Abelian,
and let~$a\in\scrA$ be given.
We must show that~$ca$ is central.
Let~$b\in\scrA$ be given.
We must show that~$(ca)b=b(ca)$.
Since~$c\scrA$ is Abelian
and~$c$ is central,
we have $cab=(ca)(cb)=(cb)(ca)=bca$.
Thus~$c$ is hereditarily central.
\end{point}
\end{point}
\begin{point}{Proposition}%
Let~$\scrA$ be a von Neumann algebra.
There is a greatest hereditarily central projection~$h$ in~$\scrA$,
and~$\hZ(\scrA)=h\scrA$.
\begin{point}{Proof}%
By Proposition~\ref{prop:weakly-closed-ideal} it suffices
to show that~$\hZ(\scrA)$ is an ultraweakly closed
two-sided ideal of~$\scrA$.
Using that every hereditarily central
element is also central, it is easily seen
that~$\hZ(\scrA)$ is a two-sided ideal.
It remains to be shown that~$\hZ(\scrA)$ is ultraweakly closed.
It suffices to prove that~$\hZ(\scrA)$
is ultrastrongly closed.
Let~$(c_i)_i$ be a net in~$\hZ(\scrA)$
which converges ultrastrongly to~$c$ in~$\scrA$.
We must show that~$c$ is hereditarily central.
Let~$a\in \scrA$ be given.
We must show that~$ca$ is central.
Since the set of central elements is ultraweakly closed,
it suffices to show that~$(c_ia)_i$ converges ultraweakly to~$ca$.
Let~$\omega\colon\scrA\to\mathbb{C}$
be a normal state.
We must show that $|\omega(ca-c_ia)|$
converges to~$0$ as~$i$ increases.
By Kadison's inequality,
\begin{equation*}
|\omega(ca -c_ia)| \ =\ |\omega((c-c_i)a)|
\ \leq\ \sqrt{\omega(\,(c-c_i)^*(c-c_i)\,)}\cdot\sqrt{\omega(a^*a)}.
\end{equation*}
The number $\sqrt{\omega((c-c_i)^*(c-c_i))}$
vanishes as~$i$ increases
since~$(c_i)_i$ converges to~$c$ ultrastrongly.
Thus~$|\omega(ca-c_ia)|$ vanishes as~$i$ increases.
Thus~$(c_ia)_i$ converges ultrastrongly to~$ca$,
and~$ca$ is central.
Hence~$c$ is hereditarily central,
and so~$\hZ(\scrA)$
is ultrastrongly closed.
\end{point}
\end{point}
\begin{point}{Definition}%
Let~$\scrA$ be a von Neumann algebra.
\begin{enumerate}
\item
Let~$h_\scrA$ denote the greatest hereditarily central
element of~$\scrA$.
\item
Let~$\eta_\scrA\colon \scrA\to \hZ(\scrA)$
be the map given by $\eta_\scrA(a)=h_\scrA a$
for all~$a\in\scrA$.
\end{enumerate}
\end{point}
\begin{point}{Theorem}%
Let~$\scrA$
be a von Neumann algebra.
For every Abelian von Neumann algebra~$\mathscr{B}$
and normal unital $*$-homomorphism $f\colon\scrA\to\mathscr{B}$
there is a unique normal unital $*$-homomorphism
$g\colon\hZ(\scrA)\to \mathscr{B}$
such that~$g\circ \eta_\scrA = f$.
\begin{point}{Proof}%
\emph{(uniqueness)}\
Let~$g_1,g_2\colon \hZ(\scrA)\to\mathscr{B}$
be normal unital $*$-homomorphisms
with $g_1\circ \eta = f = g_2 \circ \eta$.
We must show that~$g_1 = g_2$.
Let~$a\in \hZ(\scrA)$
be given.
Then~$ha=a$, and so $g_1(a) = g_1(h_\scrA a)
= g_1(\eta_\scrA(a)) = f(a)$.
Similarly, $g_2(a)=f(a)$. Hence $g_1=g_2$.
\emph{(existence)}\
Define $g\colon \hZ(\scrA)\to \mathscr{B}$
by~$g(a)=f(a)$. Then~$g$ is a normal $*$-homomorphism.
It remains to be shown that~$g$ is unital and $g\circ \eta_\scrA = f$.
Both issues are solved by proving that~$f(h_\scrA^\perp)=0$.
Let~$\mathscr{D}:=\{a\in \scrA\colon f(a)=0\}$
be the kernel of~$f$.
We must show that~$h_\scrA^\perp \in \mathscr{D}$.
Since~$f$ is a normal unital $*$-homomorphism,
$\mathscr{D}$ is an ultraweakly closed two-sided ideal of~$\scrA$.
Thus~$\mathscr{D} = c\scrA$
for some central projection~$c$ of~$\scrA$
by Proposition~\ref{prop:weakly-closed-ideal}.
Moreover, $c$ is the greatest projection of~$\mathscr{D}$.
Thus, to prove that~$h_\scrA^\perp \in\mathscr{D}$
we it suffices to show that~$h_\scrA^\perp \leq c$,
or in other words, $c^\perp \leq h_\scrA$.
For this, it suffices to show that~$c^\perp$
is hereditarily central,
or equivalently that $c^\perp\scrA$
is Abelian (see Lemma~\ref{lem:hz-abelian-ca}).
The restriction of~$f$ to~$c^\perp\scrA$
gives a multiplicative map $c^\perp\scrA \to\mathscr{B}$,
which is injective (because the kernel of~$f$ is~$c\scrA$).
Thus, since~$\mathscr{B}$ is Abelian, so is~$c^\perp \scrA$.
Hence~$f(h_\scrA^\perp)=0$.
\end{point}
\end{point}
\begin{point}{Corollary}%
The assignment $\scrA\mapsto \hZ(\scrA)$
extends to
a functor
\begin{equation*}
\hZ\colon \W{nmiu}\longrightarrow \cW{nmiu},
\end{equation*}
which is left adjoint
to the forgetfull functor $\cW{nmiu}\longrightarrow \W{nmiu}$.
The unit of this adjunction
is given by the maps $\eta_\scrA
\colon \scrA\to\hZ(\scrA)$.
\end{point}
\begin{point}{Lemma}%
Let~$\scrA$ and~$\mathscr{B}$
be von Neumann algebras.
Then~$h_{\scrA\otimes\mathscr{B}}=
h_\scrA\otimes h_\mathscr{B}$.
\begin{point}{Proof}%
Note that $(h_\scrA \otimes h_\mathscr{B})(
\scrA\otimes\mathscr{B})
\cong (h_\scrA\scrA)\otimes(h_\mathscr{B}\mathscr{B})$
is Abelian,
and so $h_\scrA\otimes h_\mathscr{B}$
is hereditarily central
by Lemma~\ref{lem:hz-abelian-ca}.
It remains to be shown that
$h_\scrA\otimes h_\mathscr{B}$
is the greatest hereditarily central element,
$h_{\scrA\otimes \mathscr{B}}$.
To this end, observe that
\begin{equation*}
1_\scrA\otimes 1_\mathscr{B}
\ = \
h_\scrA\otimes h_\mathscr{B}
\ +\
h_\scrA^\perp\otimes h_\mathscr{B}
\ +\
h_\scrA\otimes h_\mathscr{B}^\perp
\ +\
h_\scrA^\perp\otimes h_\mathscr{B}^\perp.
\end{equation*}
Thus,
if we prove that
$h_\scrA^\perp\otimes h_\mathscr{B}
+
h_\scrA\otimes h_\mathscr{B}^\perp
+
h_\scrA^\perp\otimes h_\mathscr{B}^\perp$
is an element of~$\mathscr{D}:=
h_{\scrA\otimes \mathscr{B}}^\perp
(\scrA\otimes\mathscr{B})$,
then $h_{\scrA\otimes \mathscr{B}}
= h_\scrA\otimes h_\mathscr{B}$.
(To see this, unfold $h_{\scrA\otimes \mathscr{B}}
\cdot (1_\scrA\otimes 1_\mathscr{B})$.)
Let us first prove that
$h_\scrA^\perp \otimes h_\mathscr{B}
= (h_\scrA^\perp \otimes 1)\cdot(1\otimes h_\mathscr{B})$
is in~$\mathscr{D}$.
It suffices to show that
$(h_\scrA^\perp \otimes 1)$
is in~$\mathscr{D}$.
Note that~$\mathscr{D}$ is the kernel
of~$\eta_{\scrA\otimes\mathscr{B}}$,
so we must show that~$\eta_{\scrA\otimes\mathscr{B}}(h_\scrA
\otimes 1)=0$.
We have the following commutative diagram.
\begin{equation*}
\xymatrix{
\scrA
\ar[rr]^-{a\mapsto a\otimes 1}
\ar[d]_{\eta_\scrA}
&&
\scrA\otimes\mathscr{B}
\ar[d]^{\eta_{\scrA\otimes\mathscr{B}}}
\\
\hZ(\scrA)
\ar[rr]_-{\hZ((-)\otimes 1)}
&&
\hZ(\scrA\otimes \mathscr{B})
}
\end{equation*}
Thus,
as~$\eta_\scrA(h^\perp_\scrA)=0$,
it follows that
\begin{equation*}
\eta_{\scrA\otimes \mathscr{B}}(h_\scrA^\perp
\otimes 1)
\ =\
\hZ((-)\otimes 1) (\, \eta_\scrA(h_\scrA^\perp)\,)
\ = \
\hZ((-)\otimes 1) (0)\,=\,0.
\end{equation*}
So
$h_\scrA^\perp \otimes h_\mathscr{B}$
is in~$\mathscr{D}$.
By a similar reasoning,
we see that
$h_\scrA \otimes h^\perp_\mathscr{B}$
and
$h_\scrA^\perp \otimes h^\perp_\mathscr{B}$
are in~$\mathscr{D}$.
Hence~$h_{\scrA\otimes\mathscr{B}}
=h_\scrA\otimes h_\mathscr{B}$.
\end{point}
\end{point}
\begin{point}{Corollary}%
$\hZ(\scrA\otimes\mathscr{B})
\cong \hZ(\scrA)\otimes\hZ(\mathscr{B})$.
\end{point}
\end{parsec}
The proof of
Lemma~\ref{lem:continuous-finite-measure-space-not-duplicable}
is an variation
of the proof of Theorem~6.4 of~\cite{Kornell2012}.
\section{Some categorical consequences}
\begin{parsec}%
\begin{point}%
Let $\W{nmiu}$ denote the category of von Neumann algebras
and normal MIU-maps, and $\cW{nmiu}\hookrightarrow\W{nmiu}$
the full subcategory of commutative von Neumann algebras.
It will be shown that the inclusion functor
$\cW{nmiu}\hookrightarrow\W{nmiu}$ has a left adjoint.
This means that $\cW{nmiu}$ is a reflective subcategory of $\W{nmiu}$.
We have the following general categorical results.
\end{point}
\begin{point}{Proposition}%
Let $G\colon\Cat{B}\to\Cat{A}$ be a full and faithful functor
with a left adjoint $F\colon\Cat{A}\to\Cat{B}$.
Let $T=GF$ be the induced monad on $\Cat{A}$.
Then:
\begin{enumerate}
\item
The counit $\epsilon\colon FG\to\id_{\Cat{B}}$
of the adjunction is an isomorphism.
\item
The monad $T=GF$ is idempotent,
i.e.\ the multiplication $\mu\colon TT\to T$
is an isomorphism.
\item
The adjunction $F\dashv G$ is monadic,
i.e.\ the comparison functor $\Cat{B}\to\Cat{A}^{T}$
is an equivalence.
\item
The functor $G\colon\Cat{B}\to\Cat{A}$ creates limits
(not necessarily strictly).
\item
Let $D\colon\Cat{I}\to\Cat{B}$ be a diagram.
If we have a colimit $\Colim GD$ of $GD\colon\Cat{I}\to\Cat{A}$,
then $F\Colim GD$ is a colimit of $D$
(with the obvious cocone).
\end{enumerate}
\begin{point}{Proof}%
TODO: give references.
See also nLab's article ``reflective subcategory''.
\end{point}
\end{point}
\begin{point}%
The category $\W{nmiu}$ is complete and cocomplete.
Applying the above results to
the reflective subcategory $\cW{nmiu}\hookrightarrow\W{nmiu}$,
we see that $\cW{nmiu}$ is also complete and cocomplete.
The creation of limits means
that limits in $\cW{nmiu}$ are simply those in $\W{nmiu}$,
and thus $\cW{nmiu}$ is closed under limits.
On the other hand, $\cW{nmiu}$ is not closed under colimits,
since a free product of commutative von Neumann algebras
may be noncommutative (TODO: proof). This implies that
there is no right adjoint to
the inclusion $\cW{nmiu}\hookrightarrow\W{nmiu}$.
Conjecture: In $\cW{nmiu}$,
the tensor product of von Neumann algebras
is a coproduct.
\end{point}
\end{parsec}
\subsection{Functionals}
\begin{parsec}
\begin{point}{Definition}%
Given a functional $f\colon \scrA\to \C$
on a $C^*$-algerbra~$\scrA$,
we define
\begin{enumerate}
\item
$\Define{\Real{f}}\colon \scrA\to\C$,
the \Define{real part} of~$f$,
by~$\Real{f}(a)=\Real{f(\Real{a})}
+i\Real{f(\Imag{a})}$, and
\item
$\Define{\Imag{f}}\colon \scrA\to\C$,
the \Define{imaginary part} of~$f$,
by~$\Imag{f}(a)=\Imag{f(\Real{a})}
+i\Imag{f(\Imag{a})}$.
\end{enumerate}
\end{point}
\begin{point}{Exercise}%
Show that,
given a functional~$f\colon \scrA\to \C$
on a $C^*$-algebra~$\scrA$,
\begin{enumerate}
\item
$f=\Real{f}+i\Imag{f}$, and
$\Real{f}$ and $\Imag{f}$
are i-maps (linear and involution preserving);
\item
if $f=g+ih$ for some i-maps
$g,h\colon \scrA\to\C$,
then $\Real{f}=g$ and $\Imag{f}=h$.
\end{enumerate}
\end{point}
\end{parsec}