-
Notifications
You must be signed in to change notification settings - Fork 3
/
cstar.tex
6652 lines (6451 loc) · 211 KB
/
cstar.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{$\text{C}^*$-algebras}
\begin{parsec}{20}
\begin{point}{10}
We redevelop the essentials of the theory of (unital) $C^*$-algebras
in this chapter.
Since we are ultimately interested
in von Neumann algebras
(a special type of $C^*$-algebras)
we will evade
delicate
topics such as tensor products (of $C^*$-algebras),
quotients, approximate identities,
and $C^*$-algebras without a unit.
The zenith of this chapter
is \emph{Gelfand's representation theorem} (see~\sref{gelfand}),
the fact that every commutative (unital) $C^*$-algebra
is isomorphic
to the $C^*$-algebra
$C(X)$ of continuous functions on some compact Hausdorff space~$X$
--- it yields a duality
between the category~$\CH$
of compact Hausdorff spaces (and continuous maps)
and the category~$\cCstar{miu}$ of commutative $C^*$-algebras (and
unital $*$-homomorphisms,
the appropriate structure preserving maps), see~\sref{gelfand-equivalence}.
As the road to Gelfand's representation theorem
is a bit winding ---
involving intricate relations between technical concepts ---
we have put emphasis on the invertible and positive elements
so that the important
theorems about them may serve as landmarks along the way:
\begin{enumerate}
\item
first we show that the norm
on a $C^*$-algebra
is determined by the invertible elements
(via the \emph{spectral radius}), see~\sref{norm-spectrum};
\item
then we construct a \emph{square root} of a positive element in~\sref{sqrt};
\item
and finally we
show that an element of a commutative $C^*$-algebra
is not invertible iff it is mapped to~$0$
by some multiplicative state, see~\sref{inv-mult-state}.
\end{enumerate}
At every step along the way
the positive and invertible elements
(and the norm, multiplicative states, multiplication
and other structure on a $C^*$-algebra)
are bound more tightly together
until Gelfand's representation theorem emerges.
To make this chapter
more accessible
we have removed
much material
from the ordinary development
of $C^*$-algebras
such as the more general theory of Banach algebras
(and its pathology).
This forces us
to take a slightly different path than is usual in the literature
(see e.g.~\sref{gelfand-mazur-predicament}).
After Gelfand's representation theorem
we deal with two smaller topics:
that a $C^*$-algebra
may be represented as a concrete $C^*$-algebra
of bounded operators on a Hilbert space (see~\sref{gns}),
and that the $N\times N$-matrices with entries drawn from a
$C^*$-algebra~$\scrA$
form a $C^*$-algebra~$M_N(\scrA)$
(see~\sref{cstar-matrices}).
We end
with an overture to von Neumann algebras---the
topic of the next chapter.
\end{point}%
\end{parsec}
\section{Definition and Examples}
\begin{parsec}{30}
\begin{point}{10}{Definition}
A \Define{$C^*$-algebra}\index{Cstar-algebra@$C^*$-algebra}
is a complex vector space~$\scrA$
endowed with
\begin{enumerate}
\item
a binary operation,
called \Define{multiplication}
(and denoted as such),
which is associative, and linear in both coordinates;
\item
an element~$1$, called
\Define{unit}\index{unit!of a {$C^*$-algebra}},
such that $1\cdot a = a = a\cdot 1$
for all~$a\in \scrA$;
\item
a unary operation $\Define{(\,\cdot\,)^*}$,
called \Define{involution} %
\index{$(\,\cdot\,)^*$ !involution on a $C^*$-algebra}%
\index{involution!on a $C^*$-algebra}
such that $(a^*)^*=a$,
$(ab)^*=b^*a^*$,
$(\lambda a)^* = \bar\lambda a^*$,
and $(a+b)^* = a^*+b^*$
for all~$a,b\in\scrA$ and~$\lambda\in \C$;
\item
a complete \Define{norm}%
\index{$"\"|\,\cdot\,"\"|$, norm!on a $C^*$-algebra}
$\Define{\|\,\cdot\,\|}$
such that
$\|ab\|\leq\|a\|\|b\|$
for all~$a,b\in\scrA$,
and
\begin{equation*}
\label{eq:Cstar-identity}
\|a^*a\|\ =\ \|a\|^2
\end{equation*}
holds; this equality is called the \Define{$C^*$-identity}.%
\index{Cstar-identity@$C^*$-identity}
\end{enumerate}
The $C^*$-algebra $\scrA$ is called \Define{commutative}%
\index{Cstar-algebra@$C^*$-algebra!commutative}
if $ab=ba$ for all~$a,b\in\scrA$.
\begin{point}{20}{Warning}%
In the literature it is usually not
required that a $C^*$-algebra
possess a unit; but when it does it is called
a \Define{unital $C^*$-algebra}.%
\index{unital!$C^*$-algebra}
\end{point}
\end{point}
\begin{point}{30}{Example}%
The vector space~$\C$ of \Define{complex numbers}%
\index{C@$\C$, the complex numbers!as a $C^*$-algebra}
forms a commutative $C^*$-algebra
in which
multiplication and~$1$
have their usual meaning.
Involution is given by conjugation ($z^*=\bar{z}$),
and norm by modulus ($\|z\|=|z|$).
\end{point}
\begin{point}{40}{Example}%
A \Define{$C^*$-subalgebra}%
\index{Cstar-subalgebra@$C^*$-subalgebra}
of a $C^*$-algebra~$\scrA$
is a subset~$\scrB$ of~$\scrA$,
which is a linear subspace of~$\scrA$,
contains the unit, $1$, is closed under multiplication
and involution,
and is closed with respect to the norm of~$\scrA$;
such a $C^*$-subalgebra of~$\scrA$
is itself a $C^*$-algebra
when endowed with the operations and norm
of~$\scrA$.
\end{point}
\begin{point}{50}[cstar-product]{Example}%
One can form products (in the categorical sense,
see~\sref{cstar-product-2}) of $C^*$-algebras as follows.
Let~$\scrA_i$ be a $C^*$-algebra
for every element~$i$ of some index set~$I$.
The \Define{direct sum}%
\index{direct sum!of $C^*$-algebras}
\index{$\bigoplus$, direct sum!$\bigoplus_i \scrA_i$, of $C^*$-algebras}
of the family $(\scrA_i)_i$
is the $C^*$-algebra
denoted by \Define{$\bigoplus_{i\in I}\scrA_i$} on the set
\begin{equation*}
\textstyle
\bigl\{\
a\in \prod_{i\in I}\scrA_i\colon\ \sup_{i \in I} \|a(i)\|< \infty \
\bigr\}
\end{equation*}
whose operations are defined coordinatewise,
and whose norm is a \Define{supremum norm}%
\index{supremum norm}%
\index{$"\"|\,\cdot\,"\"|$, norm!supremum $\sim$}
given by $\|a\|=\sup_{i}\|a(i)\|$.
If each~$\scrA_i$ is commutative,
then~$\bigoplus_{i\in I}\scrA_i$
is commutative.
In particular,
taking~$\scrA_i\equiv \C$,
we see that
the vector space~\Define{$\ell^\infty(X)$}%
\index{linfty@$\ell^\infty(X)$}%
\index{linfty@$\ell^\infty(X)$!as a $C^*$-algebra}
of bounded complex-valued functions
on a set~$X$ forms a commutative $C^*$-algebra
with pointwise operations and supremum norm.
\end{point}
\begin{point}{60}{Example}%
The \Define{bounded continuous functions
on a topological space}~$X$
form a commutative $C^*$-subalgebra~\Define{$BC(X)$}%
\index{$BC(X)$! as a $C^*$-algebra}
of~$\ell^\infty(X)$ (see above).
In particular,
since a continuous function on a compact Hausdorff space is
automatically bounded,
we see that the \Define{continuous functions
on a compact Hausdorff space} $X$
form a commutative $C^*$-algebra~\Define{$C(X)$}%
\index{$C(X)$}%
\index{$C(X)$!as a $C^*$-algebra}
with pointwise operations and sup-norm.
We'll see that every commutative $C^*$-algebra
is isomorphic to a~$C(X)$
in~\sref{gelfand}.
\end{point}
\begin{point}{70}[cstar-matrices-example]{Example}%
An example of a non-commutative
$C^*$-algebra
is
the vector space~\Define{$M_n$}%
\index{$M_n$, the $n\times n$-matrices!as a $C^*$-algebra}
of \Define{$n\times n$-matrices} ($n>1$) over~$\C$
with the usual (matrix) multiplication,
the identity matrix as unit,
and conjugate transpose
as involution
(so~$(A^*)_{ij} = \overline{A_{ji}}$).
The norm~$\|A\|$ of a matrix~$A$ in~$M_n$
is less obvious,
being
the \emph{operator norm}
(cf.~\sref{bounded-linear-maps})
of the associated linear map~$v\mapsto Av,\ \C^n\to\C^n$,
that is,
$\|A\|$ is
the least number~$r\geq 0$
with $\|Av\|_2\leq r\|v\|_2$
for all~$v\in \C^n$
(where $\|w\|_2=(\sum_i \left|w_i\right|^2)^{\nicefrac{1}{2}}$
denotes the $2$-norm
of~$w\in \C^n$).
It is not entirely obvious that~$\|A^*A\|=\|A\|^2$
holds
and that $M_n$ is complete.
We will prove these facts in the more general setting
of bounded operators between Hilbert spaces,
see~\sref{adjoinables-cstar-algebra}.
Suffice it to say, $\C^n$ is a Hilbert space
with~$\left<v,w\right>=\sum_i \overline{v}_iw_i$
as inner product,
each matrix gives a (bounded) linear map $v\mapsto Av,\C^n\to \C^n$,
and the conjugate transpose $A^*$ is \emph{adjoint} to~$A$
in the sense that $\left<v,Aw\right> = \left<A^*v,w\right>$
for all~$v,w\in\C^n$.
\end{point}
\begin{point}{80}{Remark}%
\index{Cstar-algebra@$C^*$-algebra!finite dimensional}
Combining~\sref{cstar-product}
and~\sref{cstar-matrices-example}
we see that
$\bigoplus_k M_{n_k}$
is a finite-dimensional
$C^*$-algebra
for any tuple $n_1,\dotsc,n_K$
of natural numbers.
In fact,
any finite-dimensional $C^*$-algebra
is of this form
as we'll see in~\sref{fdcstar}.\footnote{Although
clearly related to the
Wedderburn--Artin theorem,
see e.g.~\cite{nicholson1993},
this description of finite-dimensional
$C^*$-algebras
does not seem to be an immediate consequence of it.}
\end{point}
\end{parsec}
\subsection{Operators}
\begin{parsec}{40}[hilb]%
\begin{point}{10}[example-hilb]{Example}%
Let us now turn to perhaps the most important
and difficult example:
we'll show that the vector space~\Define{$\scrB(\scrH)$}%
\index{BH@$\scrB(\scrH)$!as a $C^*$-algebra}
of \Define{bounded operators
on a Hilbert space}~$\scrH$ forms a $C^*$-algebra
when endowed with the operator
norm.
Multiplication is given by composition,
involution by taking the \emph{adjoint} (see~\sref{hilb-def}),
and unit by the identity operator.
A \Define{concrete $C^*$-algebra}%
\index{Cstar-algebra@$C^*$-algebra!concrete}
or
a \Define{$C^*$-algebra of bounded operators}%
\index{Cstar-algebra@$C^*$-algebra!of bounded operators}
refers to a $C^*$-subalgebra of~$\scrB(\scrH)$.
We will eventually see that every $C^*$-algebra is isomorphic to a $C^*$-algebra
of bounded operators in~\sref{gelfand-naimark}.
\end{point}
\begin{point}{20}[bounded-linear-maps]{Definition}%
Let~$\scrX$ and~$\scrY$ be normed
vector spaces.
We say that~$r\in [0,\infty)$
is a \Define{bound}%
\index{bound!for a linear map}
for a linear map (=\Define{operator}%
\index{operator})
$T\colon \scrX\to\scrY$
when $\|Tx\|\leq r\|x\|$ for all~$x\in \scrX$,
and we say that~$T$ is \Define{bounded}%
\index{operator!bounded}
when there is such a bound.
In that case~$T$ has a least bound,
which is called the \Define{operator norm}%
\index{operator norm}%
\index{$"\"|\,\cdot\,"\"|$, norm!of an operator} of~$T$,
and is denoted by~$\Define{\|T\|}$.
The vector space of bounded operators
from~$\scrX$ to~$\scrY$
is denoted by~$\Define{\scrB(\scrX,\scrY)}$,%
\index{BXY@$\scrB(\scrX,\scrY)$}
and the vector space of bounded operators
from~$\scrX$ to itself is denoted by~$\scrB(\scrX)$.%
\index{BX@$\scrB(\scrX)$}
\end{point}
\begin{point}{30}[bounded-operators-basic]{Exercise}%
Let~$\scrX$, $\scrY$ and~$\scrZ$ be normed complex vector spaces.
\begin{enumerate}
\item
Show that the operator norm on~$\scrB(\scrX,\scrY)$
is, indeed, a norm.
\item
Let~$T\colon \scrX\to \scrY$ and~$S\colon \scrY\to\scrZ$
be bounded operators.
Show that $ST$ is bounded by~$\|S\|\|T\|$,
so that~$\|ST\|\leq\|S\|\|T\|$.
\item
Show that the identity operator $\id\colon \scrX\to \scrX$
is bounded by~$1$.%
\end{enumerate}%
\spacingfix{}
\end{point}%
\begin{point}{40}[operator-norm-ball]{Exercise}%
Let $T\colon \scrX\to\scrY$
be a bounded operator between normed vector spaces,
and let~$r\in[0,\infty)$.
Show that
\begin{equation*}
\textstyle
r\|T\|\ =\ \sup_{x\in (\scrX)_r} \|Tx\|,
\end{equation*}
where $\Define{(\scrX)_r}=\{x\in \scrX\colon \|x\|\leq r\}$.%
\index{*ballr@$(\scrX)_r$, $r$-ball}%
\index{*ball@$(\scrX)_1$, unit ball}
(The set~$(\scrX)_1$
is called the \Define{unit ball} of~$\scrX$.)%
\index{unit ball}
\end{point}
\begin{point}{50}[operator-norm-complete]{Lemma}%
The operator norm on~$\scrB(\scrX,\scrY)$ is complete
when~$\scrY$ is a complete normed vector space.
\begin{point}{60}{Proof}%
Let~$(T_n)_n$ be a Cauchy sequence in~$\scrB(\scrX,\scrY)$.
We must show that~$(T_n)_n$ converges to some
bounded operator $T\colon \scrX\to\scrY$.
Let~$x\in \scrX$ be given.
Since
\begin{equation*}
\|\,T_nx - T_mx\,\|\ =\ \|\,(T_n-T_m)\,x\,\|\ \leq\ \|T_n-T_m\|\,\|x\|
\end{equation*}
and~$\|T_n-T_m\|\to 0$ as~$n,m\to \infty$
(because~$(T_k)_k$ is Cauchy),
we see that $\|\,T_nx-T_mx\,\|\to 0$ as $n,m\to \infty$,
and so $(T_nx)_n$ is a Cauchy sequence in~$\scrY$.
Since~$\scrY$ is complete,
$(T_nx)_n$ converges,
and we may define $Tx:=\lim_n T_nx$,
giving a map $T\colon \scrX\to \scrY$,
which is easily seen to be linear
(by continuity of addition and scalar multiplication).
It remains to be shown that~$T$ is bounded,
and that~$(T_n)_n$ converges to~$T$ with respect to the operator norm.
Let~$\varepsilon>0$ be given, and pick~$N$ such that
$\|T_n-T_m\|\leq \frac{1}{2}\varepsilon$ for all~$n,m\geq N$.
Then for every~$x\in \scrX$
we can find~$M\geq N$ with
$\|T x - T_m x\|\leq \frac{1}{2}\varepsilon\|x\|$ for all $m\geq M$,
and so,
for $n\geq N$, $m\geq M$,
\begin{equation*}
\|(T - T_n) x\| \ \leq\ \|T x - T_mx\|\,+\,\|T_m x - T_n x\|
\ \leq\ \varepsilon\|x\|
\end{equation*}
giving that~$T-T_n$ is bounded
and $\|T-T_n\|\leq \varepsilon$ for all~$n\geq N$.
Whence~$T$ is bounded too,
and $(T_n)_n$ converges to~$T$.\qed
\end{point}
\end{point}
\begin{point}{70}[bounded-operators-banach-algebra]%
From~\sref{bounded-operators-basic}
and~\sref{operator-norm-complete}
it is clear that the complex vector space
of bounded operators~$\scrB(\scrX)$
on a complete normed vector space~$\scrX$
with composition as multiplication
and the identity operator as unit
satisfies all the requirements
to be a $C^*$-algebra that do not involve the involution, $(\,\cdot\,)^*$
(that is, $\scrB(\scrX)$ is a \Define{Banach algebra}).
To get an involution,
we need the additional structure
provided by a Hilbert space as follows.
\end{point}
\begin{point}{80}[hilb-def]{Definition}%
An \Define{inner product}%
\index{inner product!*C-valued@$\C$-valued}
on a complex vector space~$V$
is a map $\left<\,\cdot\,,\,\cdot\,\right>\colon V\times V\to \C$%
\index{$\left<\,\cdot\,,\,\cdot\,\right>$, inner product!$\C$-valued}
such that,
for all~$x,y\in V$,
$\left<x,\,\cdot\,\right>\colon V\to V$ is linear;
$\left<x,x\right>\geq 0$;
and
$\left<x,y\right>=\overline{\left<y,x\right>}$.
We say that the inner product is \Define{definite}%
\index{inner product!*C-valued@$\C$-valued!definite}
when~$\left<x,x\right>=0\implies x=0$ for~$x\in V$.
A \Define{pre-Hilbert space}~$\scrH$%
\index{pre-Hilbert space}
is a complex vector space endowed with a definite inner product.
We'll shortly see that every such~$\scrH$
carries a norm
given by
$\|x\|:= \left<x,x\right>^{\nicefrac{1}{2}}$;
if~$\scrH$ is complete with respect to this norm,
we say that~$\scrH$ is a \Define{Hilbert space}.%
\index{Hilbert space}
Let~$\scrH$ and~$\scrK$ be pre-Hilbert spaces.
We say that an operator~$T\colon \scrH\to \scrK$
is \Define{adjoint}%
\index{adjoint!of an operator}
to an operator
$S\colon \scrK\to \scrH$
when
\begin{equation*}
\left<Tx,y\right> \ = \ \left<x,Sy\right>
\qquad\text{for all $x\in \scrH$ and $y\in \scrK$.}
\end{equation*}
In that case, we call~$T$ \Define{adjointable}.%
\index{adjointable!operator}%
\index{operator!adjointable}
We'll see (in~\sref{uniqueness-adjoint})
that such adjointable~$T$ is adjoint to exactly one~$S$,
which we denote by~\Define{$T^*$}.%
\index{$(\,\cdot\,)^*$!adjoint of an operator}
\end{point}
\begin{point}{90}[hilb-basic-examples]{Example}%
We endow $\C^N$%
\index{C@$\C$, the complex numbers!as a Hilbert space}
(where~$N$ is a natural number)
with the inner product
given by
$\left<x,y\right>=\sum_i \overline{x}_iy_i$,
making it a Hilbert space.
The space~$\Define{c_{00}}$%
\index{c00@$c_{00}$!as a pre-Hilbert space}
of sequences $x_1,x_2,\dotsc$
for which~$x_n$ is non-zero
for finitely many~$n$'s
is an example of a
pre-Hilbert
which is not complete
when endowed with $\left<x,y\right>=\sum_{n=0}^\infty \overline{x}_ny_n$
as inner product.
For an example
of an infinite-dimensional Hilbert
space,
we'll have to wait until~\sref{hilb-sum}
where
we'll show
that the sequences $x_1,x_2,\dotsc$
with $\sum_n \left|x_n\right|^2<\infty$
form a Hilbert space~$\Define{\ell^2}$%
\index{l2@$\ell^2$!as a Hilbert space}
with $\left<x,y\right>=\sum_{n=0}^\infty \overline{x}_ny_n$
as its inner product,
because at this point it is not
even clear that this sum converges.
\end{point}
\begin{point}{100}[uniqueness-adjoint]{Exercise}%
Let~$x$ and~$x'$ be elements of a pre-Hilbert space~$\scrH$
with $\left<y,x\right>=\left<y,x'\right>$
for all~$y\in\scrH$.
Show that~$x=x'$ (by taking $y=x-x'$).
Conclude that every operator between pre-Hilbert spaces
has at most one adjoint.
\begin{point}{110}{Remark}%
Note that we did not require that
an adjointable operator $T\colon \scrH\to\scrK$
between pre-Hilbert spaces be bounded,
and in fact, it might not be.
Take for example
the operator
$T\colon c_{00}\to c_{00}$
given by~$(T x)_n = nx_n$,
which is adjoint to itself,
and not bounded.
On the other hand,
if either~$\scrH$ or~$\scrK$ is complete,
then both~$T$ and~$T^*$ are automatically bounded
as we'll see in~\sref{hellinger-toeplitz}.
\end{point}
\end{point}
\begin{point}{120}{Exercise}%
Let~$S$ and~$T$ be adjointable operators on a pre-Hilbert space.
\begin{enumerate}
\item
Show that~$T^*$ is adjoint to~$T$ (and so $T^{**}=T$).
\item
Show that~$(T+S)^*=T^*+S^*$
and $(\lambda S)^*=\overline{\lambda}S^*$
for every~$\lambda\in \C$.
\item
Show that~$ST$ is adjoint to $T^*S^*$ (and so $(ST)^*=T^*S^*$).
\end{enumerate}
We will, of course, show
that every bounded operator on a Hilbert space is adjointable,
see~\sref{bounded-operator-adjoinable}.
But let us first show that~$\|\,\cdot\,\|$
defined in~\sref{hilb-def} is a norm,
which boils down to the following fact
about $2\times 2$-matrices.
\end{point}
\begin{point}{130}[positive-2x2matrix]{Lemma}%
For a positive matrix $A\equiv
\left(\begin{smallmatrix}p & \overline{c} \\ c & q\end{smallmatrix}\right)$
(i.e.~$\left(
\begin{smallmatrix}\overline{u}&\overline{v}\end{smallmatrix}\right)
A
\left(\begin{smallmatrix}u \\ v \end{smallmatrix}\right) \,\geq \, 0$
for all~$u,v\in \C$),
we have
$p,q\geq 0$, and $\left|c\right|^2 \leq pq$.
\begin{point}{140}{Proof}%
Let~$u,v\in\C$ be given.
We have
\begin{equation*}
0\ \leq\
\left(\begin{smallmatrix}\overline{u}&\overline{v}\end{smallmatrix}\right)
A
\left(\begin{smallmatrix}u \\ v \end{smallmatrix}\right)
\ = \
\left|u\right|^2 p\,+\,
\overline{u}v\,\overline{c} \,+\,
u\overline{v}\,c \,+\,
\left|v\right|^2 q.
\end{equation*}
By taking~$u=1$ and $v=0$, we see that~$p\geq 0$,
and similarly $q\geq 0$.
The trick to see that~$\left|c\right|^2\leq pq$
is to
take~$v=1$ and $u=t\overline{c}$ with~$t\in \R$:
\begin{equation*}
0 \ \leq\ p\left|c\right|^2t^2
\,+\,2\left|c\right|^2t
\,+\, q.
\end{equation*}
If~$p=0$, then~$-2\left|c\right|^2t \leq q $
for all~$t\in \R$,
which implies that~$\left|c\right|^2=0=pq$.
Suppose that~$p>0$.
Then taking~$t=-p^{-1}$ we see that
\begin{equation*}
0 \ \leq\ \left|c\right|^2p^{-1}
\,-\,2\left|c\right|^2p^{-1}
\,+\, q \ = \ -\left|c\right|^2p^{-1}\,+\,q.
\end{equation*}
Rewriting gives us
$\left|c\right|^2\leq pq$.\qed
\end{point}
\end{point}
\begin{point}{150}[inner-product-basic]{Exercise}%
Let~$\left<\,\cdot\,,\,\cdot\,\right>$
be an inner product on a vector space~$V$.
Show that
the formula~$\Define{\|x\|}=\smash{\sqrt{\left<x,x\right>}}$%
\index{$"\"|\,\cdot\,"\"|$, norm!on a pre-Hilbert space}
defines a seminorm on~$V$,
that is,
$\|x\|\geq 0$,
$\|\lambda x\|=\left|\lambda\right|\|x\|$,
and---the \Define{triangle inequality}---$\|x+y\|\leq \|x\|+\|y\|$
for all~$\lambda\in \C$ and~$x,y\in V$.
Moreover, prove that~$\|\,\cdot\,\|$
is a norm when~$\left<\,\cdot\,,\,\cdot\,\right>$
is definite;
and for~$x,y\in V$:
\begin{enumerate}
\item
The \Define{Cauchy--Schwarz inequality}:%
\index{Cauchy--Schwarz inequality!for $\C$-valued inner products}
$\left|\left<x,y\right>\right|^2\,\leq\, \left<x,x\right>
\,\left<y,y\right>$;
\item
\Define{Pythagoras' theorem}:%
\index{Pythagoras' theorem}
$\|x\|^2+\|y\|^2\,=\,\|x+y\|^2$ when~$\left<x,y\right>=0$;
\item
The \Define{parallelogram law}:%
\index{parallelogram law}
$\|x\|^2\,+\,
\|y\|^2
\,= \,
\frac{1}{2}(\,\|x+y\|^2\,+\,\|x-y\|^2\,)$;
\item
\label{polarization-identity}%
The \Define{polarisation identity}:%
\index{polarisation identity!for an inner product}
$\left<x,y\right> \,=\, \frac{1}{4}\sum_{n=0}^3i^n\|i^nx+y\|^2$.
\end{enumerate}
(Hint: prove the Cauchy--Schwarz inequality
before the triangle inequality
by applying~\sref{positive-2x2matrix} to the matrix
$\smash{\bigl(\begin{smallmatrix}
\smash{\left<x,x\right>} & \smash{\left<x,y\right>} \\
\smash{\left<y,x\right>} & \smash{\left<y,y\right>}
\end{smallmatrix}\bigr)}$.
Then prove $\|x+y\|^2\leq (\|x\|+\|y\|)^2$
using the inequalities~$\left<x,y\right>+\left<y,x\right>
\leq 2\left|\left<x,y\right>\right| \leq 2\|x\|\|y\|$.)
\end{point}
\begin{point}{160}[operators-cstar-identity]{Lemma}%
For an adjointable operator~$T$ on a pre-Hilbert space~$\scrH$
\begin{equation*}
\|T^*T\|\ =\ \|T\|^2\qquad\text{and}\qquad\|T^*\|\ =\ \|T\|.
\end{equation*}%
\spacingfix{}%
\begin{point}{170}{Proof}%
If~$T=0$, then~$T^*=0$, and the statements are surely true.
Suppose~$T\neq 0$ (and so~$T^*\neq 0$).
Since $\|Tx\|^2=\left<Tx,Tx\right>=\left<x,T^*Tx\right>
\leq \|x\|\,\|T^*Tx\|\leq \|x\|^2\|T^*T\|$
for every~$x\in \scrH$
by Cauchy--Schwarz,
we have $\|T\|^2\leq \|T^*T\|$.
Since~$\|T^*T\|\leq \|T^*\|\|T\|$
and $\|T\|\neq 0$,
it follows that~$\|T\|\leq \|T^*\|$.
Since by a similar reasoning $\|T^*\|\leq \|T\|$,
we get~$\|T\|=\|T^*\|$.
But then $\|T\|^2\leq \|T^*T\|\leq \|T^*\|\|T\|=\|T\|^2$,
and so $\|T\|^2=\|T^*T\|$.\qed
\end{point}
\end{point}
\begin{point}{180}{Exercise}%
Given a Hilbert space~$\scrH$
show that the adjointable operators
form a closed subspace of~$\scrB(\scrH)$.
\end{point}
\begin{point}{190}[ketbra]{Exercise}%
Let~$x$ and~$y$ be vectors from a Hilbert space~$\scrH$.
\begin{enumerate}
\item
Show that $\Define{\ketbra{x}{y}}\colon\, z\mapsto\left<y,z\right>x$
\index{*ketbra@$\ketbra{x}{y}$, with $x,y\in\scrH$}
defines a bounded operator
$\scrH\to\scrH$,
and, moreover, that~$\|\,\ketbra{x}{y}\,\|=\|x\|\|y\|$.
\item
Show that~$\ketbra{x}{y}$
is adjointable,
and~$(\ketbra{x}{y})^*=\ketbra{y}{x}$.
\end{enumerate}
\spacingfix{}
\end{point}%
\end{parsec}%
\begin{parsec}{50}[hilb-adjoint]%
\begin{point}{10}[adjoinables-cstar-algebra]%
At this point
it is clear that the vector space of adjointable operators
on a Hilbert space forms a $C^*$-algebra.
So to prove that $\scrB(\scrH)$
is a $C^*$-algebra,
it remains to be shown that every bounded operator
is adjointable (which we'll do in~\sref{bounded-operator-adjoinable}).
We first show that each bounded functional $f\colon \scrH\to \C$
has an adjoint, see~\sref{riesz-representation-theorem},
for which we need the (existence and) properties of ``projections''
on (closed) linear subspaces:
\end{point}
\begin{point}{20}[projection-on-closed-linear-subspace]{Definition}
Let~$x$ be an element of a pre-Hilbert space~$\scrH$.
We say that an element~$y$ of a linear subspace~$C$
of~$\scrH$ is a \Define{projection of~$x$ on~$C$}%
\index{projection!of~$x$ on~$C$}
if
\begin{equation*}
\|x-y\|\,=\,\min\{\,\|x-y'\|\colon \,y'\in C\,\}.
\end{equation*}
(In other words,~$y$ is one of the elements of~$C$ closest to~$x$.)
\end{point}
\begin{point}{30}{Exercise}%
We'll see in~\sref{projection-theorem}
that on a \emph{closed}
linear subspace
every vector has a projection.
For arbitrary linear subspaces this
isn't so:
show that the only vectors in~$\ell_2$
having
a projection on the linear subspace~$c_{00}$
(from \sref{hilb-basic-examples})
are the vectors in~$c_{00}$ themselves.
\end{point}
\begin{point}{40}{Lemma}%
Let~$\scrH$ be a pre-Hilbert space,
and let $x,e\in\scrH$ with
$\|e\|=1$.
Then~$y=\left<e,x\right>e$ is the unique projection of~$x$ on~$e\C$.
\begin{point}{50}{Proof}%
Let~$y'\in e\C$
with~$y'\neq y$
be given.
To prove that~$y$
is the unique projection of~$x$ on $e\C$
it suffices to show that $\|x-y\|<\|x-y'\|$.
Since~$y'\neq y\equiv \left<e,x\right>e$,
there is~$\lambda\in \C$, $\lambda\neq 0$
with $y'=(\lambda+\left<e,x\right>)e$.
Note that $\left<e,y\right>=\left<e,\left<e,x\right>e\right>=
\left<e,x\right>\left<e,e\right>
= \left<e,x\right>$,
and so~$\left<e,x-y\right>=0$.
Then~$y'-y\equiv \lambda e$ and~$x-y$ are orthogonal too,
and thus, by Pythagoras'~theorem (see~\sref{inner-product-basic}),
we have $\|y'-x\|^2
=\|y'-y\|^2+\|y-x\|^2\equiv \left|\lambda\right|^2+\|x-y\|^2
>\|x-y\|^2$, because~$\lambda\neq 0$.
Hence~$\|y'-x\|>\|y-x\|$.\qed
\end{point}
\end{point}
\begin{point}{60}[hilb-projection-basic]{Exercise}%
Let~$y$ be a projection of an element~$x$ of a pre-Hilbert space~$\scrH$
on a linear subspace~$C$.
Show that~$y$ is a projection of~$x$ on $y\C$.
Conclude that~$y$ is the unique projection of~$x$ on~$C$,
and that~$\left<y,x-y\right>=0$.
Show that~$y+c$ is the projection of~$x+c$ on~$C$
for every~$c\in C$.
Conclude that~$\left<y',x-y\right>\equiv\left<y',(x+y'-y)-y'\right>=0$
for every~$y'\in C$.
\end{point}
\begin{point}{70}[projection-theorem]{Projection Theorem}%
\index{Projection Theorem}%
Let~$C$ be a closed linear subspace
of a Hilbert space~$\scrH$.
Each~$x\in \scrH$
has a unique projection~$y$ on~$C$,
and $\left<y',y\right>=\left<y',x\right>$ for~$y'\in C$.
\begin{point}{80}{Proof}%
We only need to show that there is a projection~$y$
of~$x$ on~$C$,
because~\sref{hilb-projection-basic}
gives us that such~$y$ is unique and satisfies
$\left<y',y\right> = \left<y',x\right>$ for all~$y'\in C$.
Write~$r:=\inf\{\,\|x-y'\|\colon\, y'\in C\,\}$,
and pick a sequence $y_1,y_2,\dotsc \in C$
such that $\|x-y_n\|\rightarrow r$.
We will show that~$y_1,y_2,\dotsc$ is Cauchy.
Let~$\varepsilon >0$
be given,
and pick~$N$ such that $\|y_n-x\|^2\leq r^2+\frac{1}{4}\varepsilon$
for all~$n\geq N$.
Let~$n,m\geq N$ be given.
Then since $\frac{1}{2}(y_n+y_m)$
is in~$C$, we have
$\|y_n+y_m-2x\|\equiv
2\|\frac{1}{2}(y_n+y_m)-x\|\geq 2r$,
and so by the parallelogram law (see \sref{inner-product-basic}),
\begin{alignat*}{3}
\|y_n-y_m\|^2
\ &\equiv\
\|(y_n-x)-(y_m-x)\|^2\\
\ &=\
2\|y_n-x\|^2 + 2\|y_m-x\|^2
- \|y_n+y_m-2x\|^2\\
\ &\leq\
4r^2 + \varepsilon - 4r^2 \ \leq \ \varepsilon.
\end{alignat*}
Hence~$y_1,y_2,\dotsc$ is Cauchy,
and converges to some~$y\in C$,
because~$\scrH$ is complete and~$C$ is closed.
It follows easily that~$\|x-y\|=r$,
and thus~$y$ is the projection of~$x$ on~$C$.\qed
\end{point}
\end{point}
\begin{point}{90}[riesz-representation-theorem]{Riesz'~Representation Theorem}%
\index{Riesz' Representation Theorem}%
Let~$\scrH$ be a Hilbert space.
For every bounded linear map~$f\colon \scrH\to\C$
there is a unique vector~$x\in \scrH$
with $\left<x,\,\cdot\,\right>=f$.
\begin{point}{100}{Proof}%
If~$f=0$, then $x=0$ does the job.
Suppose that~$f\neq 0$.
There is an~$x'\in\scrH$ with~$f(x')=1$.
Note that~$\ker(f)$ is closed, because~$f$
is bounded.
So by~\sref{projection-theorem},
we know that~$x'$
has a projection~$y$ on~$\ker(f)$,
and $\left<x',z\right>=\left<y,z\right>$
for all~$z\in \ker(f)$.
Then for~$x'':=x'-y$,
we have $f(x'')=1$ and~$\left<x'',y'\right>=0$
for all~$y'\in \ker(f)$.
Given $z\in \scrH$,
we have $f(\,z-f(z)x''\,)=0$,
so~$z-f(z)x''\in \ker(f)$,
and thus~$0=\left<x'',z-f(z)x''\right>\equiv \left<x'',z\right>-f(z)\|x''\|^2$.
Hence writing $x:=x''\|x''\|^{-2}$
we have~$f(z)=\left<x,z\right>$
for all~$z\in \scrH$.
Finally, uniqueness of~$x$ follows from~\sref{uniqueness-adjoint}.\qed
\end{point}
\end{point}
\begin{point}{110}[bounded-operator-adjoinable]{Exercise}%
Prove that every bounded operator~$T$ on a Hilbert space~$\scrH$
is adjointable, as follows.
Let~$x\in \scrH$ be given.
Prove that~$\left<x,T(\,\cdot\,)\right>\colon \scrH\to \C$
is a bounded linear map.
Let~$Sx$ be the unique vector with $\left<Sx,\,\cdot\,\right>
=\left<x,T(\,\cdot\,)\right>$,
which exists by~\sref{riesz-representation-theorem}.
Show that~$x\mapsto Sx$
gives a bounded linear map $S$, which is adjoint to~$T$.
\end{point}
\begin{point}{120}%
Thus the bounded operators
on a Hilbert space~$\scrH$
form a $C^*$-algebra~$\scrB(\scrH)$%
\index{BH@$\scrB(\scrH)$!as a $C^*$-algebra}
as described in~\sref{example-hilb}.
We will return to Hilbert spaces
in~\sref{gelfand-naimark},
where we show that every $C^*$-algebra
is isomorphic to a $C^*$-subalgebra of
a $\scrB(\scrH)$.
\end{point}
\end{parsec}
\begin{parsec}{60}%
\begin{point}{10}%
Here is a non-trivial
example of a Hilbert space
that will be used later on.
\end{point}
\begin{point}{20}[hilb-sum]{Proposition}%
Given a family $(\scrH_i)_{i\in I}$
of Hilbert spaces,
the vector space
\begin{equation*}
\textstyle
\Define{\bigoplus_i \scrH_i} \ =\ \{\
x\in \prod_i \scrH_i\colon\
\sum_i \|x_i\|^2 <\infty \ \}.
\end{equation*}%
\index{direct sum!of Hilbert spaces}%
\index{$\bigoplus$, direct sum!$\bigoplus_i\scrH_i$, of Hilbert spaces}
is a Hilbert space
when endowed with the inner product
$\left<x,y\right>=\sum_i \left<x_i,y_i\right>$.
\begin{point}{30}{Proof}%
To begin with
we must show that~$\sum_i \left<x_i,y_i\right>$
converges for~$x,y\in\bigoplus_i \scrH_i$.
Given~$\varepsilon>0$
we must
find a finite subset~$G$ of~$I$
such that~$ \left|\sum_{i \in F} \left<x_i,y_i\right>\right|
\leq \varepsilon$ for all finite $F\subseteq I\backslash G$.
Since an obvious application
of the Cauchy--Schwarz inequality
gives
us that for every finite subset~$F$ of~$I$
\begin{equation*}
\Bigl|\sum_{i\in F}
\left<x_i,y_i\right>\Bigr|^2
\ \leq\
\sum_{i\in F}\|x_i\|^2
\, \sum_{i\in F}\|y_i\|^2,
\end{equation*}
any~$G\subseteq I$
with $\sum_{i\in I\backslash G} \|x_i\|^2 \leq \sqrt{\varepsilon}$
and~$\sum_{i\in I\backslash G} \|y_i\|^2 \leq \sqrt{\varepsilon}$
will do.
It is easily seen that
$\left<x,y\right>:=\sum_i \left<x_i,y_i\right>$
gives a definite inner product on~$\bigoplus_i \scrH_i$; the
remaining difficulty
lies in showing that the resulting norm is complete.
To this end, let $x_1,x_2,\dotsc$ be a Cauchy sequence
in~$\bigoplus_{i\in I}\scrH_i$;
we must show that it converges to some~$x_\infty\in \bigoplus_i \scrH_i$.
We do the obvious thing:
since for every~$i\in I$
the sequence $(x_1)_i, (x_2)_i,\dotsc$
is Cauchy in~$\scrH_i$
we may define $(x_\infty)_i:=\lim_n (x_n)_i$,
and thereby get an element $x_\infty$ of~$\prod_i \scrH_i$.
Since for each finite subset~$F$ of~$I$
we have $\sum_{i\in F} \|(x_\infty)_i\|^2
=\lim_n \sum_{i\in F} \|(x_n)_i\|^2
\leq \lim_n \|x_n\|^2$,
we have $\sum_{i\in I} \|(x_\infty)_i\|^2
\leq \lim_n \|x_n\|^2 <\infty$,
and so~$x_\infty\in\bigoplus_i \scrH_i$.
It remains to be shown that~$x_1,x_2,\dotsc$
converges to~$x_\infty$
(not only coordinatewise but also)
with respect to the inner product on~$\bigoplus_i \scrH_i$.
Given~$\varepsilon >0$
pick $N$ such that $\|x_n - x_m\|\leq \frac{1}{2\sqrt{2}}\varepsilon$
for all~$n,m\geq N$.
We claim that for such~$n$
we have $\|x_\infty -x\|\leq \varepsilon$.
Indeed, first note that since the sum
\begin{equation*}
\sum_{i\in I} \|(x_\infty)_i - (x_n)_i \|^2
\ \equiv\
\sum_{i\in F} \|(x_\infty)_i - (x_n)_i \|^2
\ +\
\sum_{i\in I\backslash F} \|(x_\infty)_i - (x_n)_i \|^2
\end{equation*}
converges (to $\|x_\infty - x_n\|^2$),
we can find
a finite subset~$F$ (depending on~$n$)
such that second term in the right-hand side above
is smaller than~$\frac{1}{2}\varepsilon^2$.
To see that the first term is also below~$\frac{1}{2}\varepsilon^2$,
begin by noting that for every~$m$,
\begin{equation*}
\Bigl(\,\sum_{i\in F} \|(x_\infty)_i - (x_n)_i \|^2\,\Bigr)^{\nicefrac{1}{2}}
\ \leq \
\Bigl(\,\sum_{i\in F} \|(x_\infty)_i - (x_m)_i \|^2\,\Bigr)^{\nicefrac{1}{2}}
\ +\
\Bigl(\,\sum_{i\in F} \|(x_m)_i - (x_n)_i \|^2\,\Bigr)^{\nicefrac{1}{2}}.
\end{equation*}
Since~$F$ is finite,
and~$(x_m)$ converges
to~$x_\infty$ coordinatewise
we can find an~$m$ large enough
that the first term on the right-hand side above
is below~$\smash{\frac{1}{2\sqrt{2}}\varepsilon}$.
If we choose~$m\geq N$
we see that the second term is below $\smash{\frac{1}{2\sqrt{2}}\varepsilon}$
as well,
and we conclude that~$\|x_\infty-x_n\|\leq \varepsilon$.\qed
\end{point}
\end{point}
\end{parsec}
\section{The Basics}
\begin{parsec}{70}%
\begin{point}{10}%
Now that we have seen the most important examples
of $C^*$-algebras,
we can begin developing the theory.
We'll start easy with the self-adjoint elements:
\end{point}
\begin{point}{20}{Definition}%
Given an element $a$ of a $C^*$-algebra $\scrA$,
\begin{enumerate}
\item we say that $a$ is \Define{self-adjoint}%
\index{self adjoint} if $a^* =a$, and
\item we write $\Define{\Real{a}}:= \frac{1}{2}(a+a^*)$
and $\Define{\Imag{a}}:=\frac{1}{2i}(a-a^*)$
for the \Define{real} and \Define{imaginary part}%
\index{real part!of an element of a $C^*$-algebra}%
\index{$\Real{(\,\cdot\,)}$, real part!$\Real{a}$, of an element of a $C^*$-algebra}%
\index{imaginary part!of an element of a $C^*$-algebra}%
\index{$\Imag{(\,\cdot\,)}$, imaginary part!$\Imag{a}$, of an element of a $C^*$-algebra}