-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
305 lines (267 loc) · 12.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import numpy as np
#np.random.seed(11)
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.preprocessing import StandardScaler
import h5py
import os.path as osp
import os
from scipy import ndimage
from glob import glob
from tqdm import tqdm
import sys
'''
Functions used throughout the project.
Set data_root to where your data is saved.
'''
# data_root = '/raid/data/hurricane/'
data_root = 'hurricane_data/'
hand_features = ['vs0', 'PSLV_v2', 'PSLV_v3', 'PSLV_v4', 'PSLV_v5', 'PSLV_v6', 'PSLV_v7',
'PSLV_v8', 'PSLV_v9', 'PSLV_v10', 'PSLV_v11', 'PSLV_v12', 'PSLV_v13',
'PSLV_v14', 'PSLV_v15', 'PSLV_v16', 'PSLV_v17', 'PSLV_v18', 'PSLV_v19',
'MTPW_v2', 'MTPW_v3', 'MTPW_v4', 'MTPW_v5', 'MTPW_v6', 'MTPW_v7',
'MTPW_v8', 'MTPW_v9', 'MTPW_v10', 'MTPW_v11', 'MTPW_v12', 'MTPW_v13',
'MTPW_v14', 'MTPW_v15', 'MTPW_v16', 'MTPW_v17', 'MTPW_v18', 'MTPW_v19',
'MTPW_v20', 'MTPW_v21', 'MTPW_v22', 'IR00_v2', 'IR00_v3', 'IR00_v4',
'IR00_v5', 'IR00_v6', 'IR00_v7', 'IR00_v8', 'IR00_v9', 'IR00_v10',
'IR00_v11', 'IR00_v12', 'IR00_v13', 'IR00_v14', 'IR00_v15', 'IR00_v16',
'IR00_v17', 'IR00_v18', 'IR00_v19', 'IR00_v20', 'IR00_v21', 'CSST_t24',
'CD20_t24', 'CD26_t24', 'COHC_t24', 'DTL_t24', 'RSST_t24', 'U200_t24',
'U20C_t24', 'V20C_t24', 'E000_t24', 'EPOS_t24', 'ENEG_t24', 'EPSS_t24',
'ENSS_t24', 'RHLO_t24', 'RHMD_t24', 'RHHI_t24', 'Z850_t24', 'D200_t24',
'REFC_t24', 'PEFC_t24', 'T000_t24', 'R000_t24', 'Z000_t24', 'TLAT_t24',
'TLON_t24', 'TWAC_t24', 'TWXC_t24', 'G150_t24', 'G200_t24', 'G250_t24',
'V000_t24', 'V850_t24', 'V500_t24', 'V300_t24', 'TGRD_t24', 'TADV_t24',
'PENC_t24', 'SHDC_t24', 'SDDC_t24', 'SHGC_t24', 'DIVC_t24', 'T150_t24',
'T200_t24', 'T250_t24', 'SHRD_t24', 'SHTD_t24', 'SHRS_t24', 'SHTS_t24',
'SHRG_t24', 'PENV_t24', 'VMPI_t24', 'VVAV_t24', 'VMFX_t24', 'VVAC_t24',
'HE07_t24', 'HE05_t24', 'O500_t24', 'O700_t24', 'CFLX_t24', 'DELV-12']
def load_image(path):
h5 = h5py.File(path, 'r')
return h5['matrix'].value
def prepend_subdirs(all_names,names):
ret = []
for p in names:
for q in all_names:
if p in q:
ret.append(q)
return ret
def load_augmented_features():
x_train = np.load('features_train.npy')
x_test = np.load('features_test.npy')
y_train = np.load('y_train.npy')
y_test = np.load('y_test.npy')
ids = np.load('ids.npy')
return x_train, x_test, y_train, y_test, ids
def load_image_data_cv():
# train
train_df = pd.read_csv(osp.join(data_root, 'gt_64.csv'))
x_train = np.array([load_image(p) for p in train_df['image_filename'].values])
y_train = train_df['dv24'].values
ids = train_df['id'].values
# test
x_test, _, y_test = load_augmented_data_cv(test_only=True, image=True)
# test_df = pd.read_csv(osp.join(data_root, 'gt_64_2017.csv')
# y_test = test_df['dv24'].values
# x_test = np.array([load_image(p) for p in test_df['image_filename'].values])
return x_train, x_test, y_train, y_test, ids
def load_hand_data_cv():
# train
train_df = pd.read_csv(osp.join(data_root, 'train_global_fill_na_w_img_scaled.csv')) #'hand_global_train.csv'
train_df = train_df.loc[~((train_df.basin=='AL') & (train_df.year==2017))]
ids = train_df['name'].values
x_train = np.array(train_df[hand_features].values)
y_train = train_df[['dvs24']].values
# test
test_df = pd.read_csv(osp.join(data_root, 'train_global_fill_na_w_img_scaled.csv'))
test_df = test_df.loc[((test_df.year==2017) & (test_df.type=='opr'))]
x_test = np.array(test_df[hand_features].values)
y_test = test_df[['dvs24']].values
return x_train, x_test, y_train, y_test, ids
def load_augmented_data_cv(test_only=False, image=False):
if not test_only:
# train
train_df = pd.read_csv(osp.join(data_root, 'train_global_fill_na_w_img_scaled.csv')) #'NOAA_all_dvs24_vars_w_img_train_clean.csv'
train_df = train_df.loc[~((train_df.basin=='AL') & (train_df.year==2017))]
if image:
train_df = train_df.loc[~train_df.imag_name.isnull()]
print(('training data size:', train_df.shape))
y_train_temp = train_df[['dvs24']].values
ids_temp = train_df['name'].values
x_train_hand_temp = np.array(train_df[hand_features].values)
if image:
print('Loading train images...')
x_train_images = []
x_train_hand = []
y_train = []
ids = []
for i,im_name in enumerate(train_df['imag_name'].values):
#print(im_name,end=', ')
try:
im_path = (glob(osp.join(data_root, f'images_64/*/{im_name}.h5')) + glob(osp.join(data_root, f'images_64_2017/*/{im_name}.h5')))[0]
x_train_images.append(load_image(im_path))
x_train_hand.append(x_train_hand_temp[i,:])
y_train.append(y_train_temp[i])
ids.append(ids_temp[i])
except:
pass
x_train_images = np.array(x_train_images)
y_train = np.array(y_train)
x_train_hand = np.array(x_train_hand)
print(('FINAL training data size:', y_train.shape))
# test
test_df = pd.read_csv(osp.join(data_root, 'train_global_fill_na_w_img_scaled.csv'))
test_df = test_df.loc[((test_df.year==2017) & (test_df.type=='opr'))]
if image:
test_df = test_df.loc[~test_df.imag_name.isnull()]
y_test_temp = test_df[['dvs24']].values
x_test_hand_temp = np.array(test_df[hand_features].values)
print(('testing size: ', test_df.shape))
if image:
print('Loading test images...')
x_test_images = []
x_test_hand = []
y_test = []
for i,im_name in enumerate(test_df['imag_name'].values):
#print(im_name, end=', ')
try:
im_path = (glob(osp.join(data_root, f'images_64/*/{im_name}.h5')) + glob(osp.join(data_root, f'images_64_2017/*/{im_name}.h5')))[0]
x_test_images.append(load_image(im_path))
x_test_hand.append(x_test_hand_temp[i,:])
y_test.append(y_test_temp[i])
except:
pass
x_test_images = np.array(x_test_images)
x_test_hand = np.array(x_test_hand)
y_test = np.array(y_test)
print(('FINAL testing size: ', y_test.shape))
if test_only:
return x_test_images, x_test_hand, y_test
else:
return (x_train_images, x_train_hand), (x_test_images, x_test_hand), y_train, y_test, ids
def plot_pred_v_true(y_true, y_pred, **kwargs):
plt.scatter(y_true, y_pred)
plt.plot([-100, 100], [-100, 100], '-', color='r')
plt.xlim(-70,70)
plt.ylim(-70,70)
plt.xlabel('True')
plt.ylabel('Predict')
if 'title' in kwargs:
plt.title(kwargs['title'])
if 'save_path' in kwargs:
if not osp.exists(osp.dirname(kwargs['save_path'])):
os.makedirs(osp.dirname(kwargs['save_path']))
plt.savefig(kwargs['save_path'])
else:
plt.show()
def compute_metrics(y_true, y_predict, print_them=False):
metrics = {'MAE': mean_absolute_error(y_true, y_predict),
'RMSE': np.sqrt(mean_squared_error(y_true, y_predict)),
'R^2': r2_score(y_true, y_predict)}
if print_them:
for k, v in metrics.items():
print(f'{k}: {v:.2f}')
print()
return metrics
def get_train_hurricane_ids(csv_file=osp.join(data_root, 'train_64.csv')):
df = pd.read_csv(csv_file)
return df['id'].values
def image_generator(x, y, batch_sz=32):
'''
Data augmentation for cnn_augmented
'''
def random_rotate(im):
theta = np.random.choice([0,90,180,270])
if theta == 0:
return im
else:
return ndimage.rotate(im, theta)
x_images = x[0][:]
x_hand = x[1][:]
batches_per_epoch = (len(y) // batch_sz) + 1
while True:
# shuffle data sequence
shuffle = np.random.permutation(len(y))
x_images = x_images[shuffle]
x_hand = x_hand[shuffle]
y = y[shuffle]
# loop batches
for b in range(batches_per_epoch):
x_images_batch = x_images[b*batch_sz:(b+1)*batch_sz]
x_hand_batch = x_hand[b*batch_sz:(b+1)*batch_sz]
x_images_batch = np.array([random_rotate(_) for _ in x_images_batch])
y_batch = y[b*batch_sz:(b+1)*batch_sz]
yield [x_images_batch, x_hand_batch], y_batch
def load_loyo_data(leave_out_year, get_hand=False, get_images=False, scale=False, remove_oprreadup=False, remove_oprfortraining=False, data_root=data_root):
df = pd.read_csv(osp.join(data_root, 'train_global_fill_REA_na_wo_img_scaled_w2020.csv')) #58995 rows
#df = pd.read_csv(osp.join(data_root, 'train_global_fill_na_w_img_scaled.csv')) # 38k data
# train
train_df = df.loc[~((df.basin=='AL') & (df.year==leave_out_year))]
# if remove duplicated opr and rea training events (the rea part)for AL 2010-2018:
if remove_oprreadup:
train_df = train_df.loc[~((train_df.type=='rea') & (train_df.basin=='AL') & (train_df.year>=2010))]
# remove all opr data points for training:
if remove_oprfortraining:
train_df = train_df.loc[~(train_df.type=='opr')]
ids = train_df['name'].values
y_train = train_df[['dvs24']].values
# test
test_df = df.loc[((df.year==leave_out_year) & (df.type=='opr'))]
y_test = test_df[['dvs24']].values
# hand features
if get_hand:
x_train_hand = train_df[hand_features].values
x_test_hand = test_df[hand_features].values
# images
if get_images:
names_train = train_df['image_name'].values
names_test = test_df['image_name'].values
all_names = [str(p) for p in Path(osp.join(data_root,'image2ch_no_nans_split_64')).rglob('*.h5')]
paths_train = prepend_subdirs(all_names, names_train)
paths_test = prepend_subdirs(all_names, names_test)
x_train_images = np.array([load_image(p) for p in paths_train])
x_test_images = np.array([load_image(p) for p in paths_test])
if scale:
means = [243.78, 1.96]
std_devs = [30.14, 3.08]
x_train_images[...,0] = ( x_train_images[...,0] - means[0] ) / std_devs[0]
x_train_images[...,1] = ( x_train_images[...,1] - means[1] ) / std_devs[1]
x_test_images[...,0] = ( x_test_images[...,0] - means[0] ) / std_devs[0]
x_test_images[...,1] = ( x_test_images[...,1] - means[1] ) / std_devs[1]
# returning
if get_hand and not get_images:
return x_train_hand, x_test_hand, y_train, y_test, ids
if get_images and not get_hand:
return x_train_images, x_test_images, y_train, y_test, ids
if get_images and get_hand:
return [x_train_images, x_train_hand], [x_test_images, x_test_hand], y_train, y_test, ids
def get_train_hurricane_names_loyo(leave_out_year,data_root=data_root):
# load all data into one data frame
train_df = pd.read_csv(osp.join(data_root, 'train.csv')).append(pd.read_csv(osp.join(data_root, 'test.csv')))
# take out year from train and take out all except year from test
df = train_df[train_df.year != leave_out_year]
df.dropna(axis=0, inplace=True, subset=['DELV-12'])
return df['name'].values
def predict_with_rotations(model, x, architecture=None):
'''
Predict on rotations of the same image
'''
y_predict = None
thetas = (0, 90, 180, 270)
for theta in thetas:
if architecture == 'cnn_augmented':
x_rotated = [np.array([ndimage.rotate(_, theta) for _ in x[0]]), x[1]]
else:
x_rotated = np.array([ndimage.rotate(_, theta) for _ in x])
if y_predict is None:
y_predict = model.predict(x_rotated)[:,0]
else:
y_predict += model.predict(x_rotated)[:,0]
y_predict /= len(thetas)
return y_predict
def save_model(model,model_save_filename):
if model_save_filename:
print(f'Saving model to {model_save_filename}...')
model.save(model_save_filename)
return