forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQN.py
executable file
·190 lines (165 loc) · 6.8 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: DQN.py
# Author: Yuxin Wu
import argparse
import numpy as np
import os
import cv2
import gym
import tensorflow as tf
from tensorpack import *
from atari_wrapper import FireResetEnv, FrameStack, LimitLength, MapState
from common import Evaluator, eval_model_multithread, play_n_episodes
from DQNModel import Model as DQNModel
from expreplay import ExpReplay
BATCH_SIZE = 64
IMAGE_SIZE = (84, 84)
FRAME_HISTORY = 4
UPDATE_FREQ = 4
MEMORY_SIZE = 1e6
# will consume at least 1e6 * 84 * 84 bytes == 6.6G memory.
INIT_MEMORY_SIZE = MEMORY_SIZE // 20
STEPS_PER_EPOCH = 100000 // UPDATE_FREQ # each epoch is 100k played frames
EVAL_EPISODE = 50
NUM_PARALLEL_PLAYERS = 3
USE_GYM = False
ENV_NAME = None
def resize_keepdims(im, size):
# Opencv's resize remove the extra dimension for grayscale images. We add it back.
ret = cv2.resize(im, size)
if im.ndim == 3 and ret.ndim == 2:
ret = ret[:, :, np.newaxis]
return ret
def get_player(viz=False, train=False):
if USE_GYM:
env = gym.make(ENV_NAME)
else:
from atari import AtariPlayer
# frame_skip=4 is what's used in the original paper
env = AtariPlayer(ENV_NAME, frame_skip=4, viz=viz,
live_lost_as_eoe=train, max_num_frames=60000)
env = FireResetEnv(env)
env = MapState(env, lambda im: resize_keepdims(im, IMAGE_SIZE))
if not train:
# in training, history is taken care of in expreplay buffer
env = FrameStack(env, FRAME_HISTORY)
if train and USE_GYM:
env = LimitLength(env, 60000)
return env
class Model(DQNModel):
"""
A DQN model for 2D/3D (image) observations.
"""
def _get_DQN_prediction(self, image):
assert image.shape.rank in [4, 5], image.shape
# image: N, H, W, (C), Hist
if image.shape.rank == 5:
# merge C & Hist
image = tf.reshape(
image,
[-1] + list(self.state_shape[:2]) + [self.state_shape[2] * FRAME_HISTORY])
image = image / 255.0
with argscope(Conv2D, activation=lambda x: PReLU('prelu', x), use_bias=True):
l = (LinearWrap(image)
# Nature architecture
.Conv2D('conv0', 32, 8, strides=4)
.Conv2D('conv1', 64, 4, strides=2)
.Conv2D('conv2', 64, 3)
# architecture used for the figure in the README, slower but takes fewer iterations to converge
# .Conv2D('conv0', out_channel=32, kernel_shape=5)
# .MaxPooling('pool0', 2)
# .Conv2D('conv1', out_channel=32, kernel_shape=5)
# .MaxPooling('pool1', 2)
# .Conv2D('conv2', out_channel=64, kernel_shape=4)
# .MaxPooling('pool2', 2)
# .Conv2D('conv3', out_channel=64, kernel_shape=3)
.FullyConnected('fc0', 512)
.tf.nn.leaky_relu(alpha=0.01)())
if self.method != 'Dueling':
Q = FullyConnected('fct', l, self.num_actions)
else:
# Dueling DQN
V = FullyConnected('fctV', l, 1)
As = FullyConnected('fctA', l, self.num_actions)
Q = tf.add(As, V - tf.reduce_mean(As, 1, keep_dims=True))
return tf.identity(Q, name='Qvalue')
def get_config(model):
global args
expreplay = ExpReplay(
predictor_io_names=(['state'], ['Qvalue']),
get_player=lambda: get_player(train=True),
num_parallel_players=NUM_PARALLEL_PLAYERS,
state_shape=model.state_shape,
batch_size=BATCH_SIZE,
memory_size=MEMORY_SIZE,
init_memory_size=INIT_MEMORY_SIZE,
update_frequency=UPDATE_FREQ,
history_len=FRAME_HISTORY,
state_dtype=model.state_dtype.as_numpy_dtype
)
# Set to other values if you need a different initial exploration
# (e.g., # if you're resuming a training half-way)
# expreplay.exploration = 1.0
return TrainConfig(
data=QueueInput(expreplay),
model=model,
callbacks=[
ModelSaver(),
PeriodicTrigger(
RunOp(DQNModel.update_target_param, verbose=True),
every_k_steps=10000 // UPDATE_FREQ), # update target network every 10k steps
expreplay,
ScheduledHyperParamSetter('learning_rate',
[(0, 1e-3), (60, 4e-4), (100, 2e-4), (500, 5e-5)]),
ScheduledHyperParamSetter(
ObjAttrParam(expreplay, 'exploration'),
[(0, 1), (10, 0.1), (320, 0.01)], # 1->0.1 in the first million steps
interp='linear'),
PeriodicTrigger(Evaluator(
EVAL_EPISODE, ['state'], ['Qvalue'], get_player),
every_k_epochs=5 if 'pong' in args.env.lower() else 10), # eval more frequently for easy games
HumanHyperParamSetter('learning_rate'),
],
steps_per_epoch=STEPS_PER_EPOCH,
max_epoch=800,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--task', help='task to perform',
choices=['play', 'eval', 'train'], default='train')
parser.add_argument('--env', required=True,
help='either an atari rom file (that ends with .bin) or a gym atari environment name')
parser.add_argument('--algo', help='algorithm',
choices=['DQN', 'Double', 'Dueling'], default='Double')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
ENV_NAME = args.env
USE_GYM = not ENV_NAME.endswith('.bin')
# set num_actions
num_actions = get_player().action_space.n
logger.info("ENV: {}, Num Actions: {}".format(args.env, num_actions))
state_shape = IMAGE_SIZE + (3, ) if USE_GYM else IMAGE_SIZE
model = Model(state_shape, FRAME_HISTORY, args.algo, num_actions)
if args.task != 'train':
assert args.load is not None
pred = OfflinePredictor(PredictConfig(
model=model,
session_init=get_model_loader(args.load),
input_names=['state'],
output_names=['Qvalue']))
if args.task == 'play':
play_n_episodes(get_player(viz=0.01), pred, 100, render=True)
elif args.task == 'eval':
eval_model_multithread(pred, EVAL_EPISODE, get_player)
else:
logger.set_logger_dir(
os.path.join('train_log', 'DQN-{}'.format(
os.path.basename(args.env).split('.')[0])))
config = get_config(model)
if args.load:
config.session_init = get_model_loader(args.load)
launch_train_with_config(config, SimpleTrainer())