diff --git a/milliontrees/common/metrics/all_metrics.py b/milliontrees/common/metrics/all_metrics.py index a453262..7847fc9 100644 --- a/milliontrees/common/metrics/all_metrics.py +++ b/milliontrees/common/metrics/all_metrics.py @@ -434,8 +434,8 @@ class KeypointAccuracy(ElementwiseMetric): """Given a specific Intersection over union threshold, determine the accuracy achieved for a one-class detector.""" - def __init__(self, iou_threshold=0.5, score_threshold=0.5, name=None): - self.iou_threshold = iou_threshold + def __init__(self, distance_threshold=5, score_threshold=5, name=None): + self.distance_threshold = distance_threshold self.score_threshold = score_threshold if name is None: name = "keypoint_acc" @@ -462,13 +462,13 @@ def _compute_element_wise(self, y_pred, y_true): def _point_iou(self, src_keypoints, pred_keypoints): return torch.cdist(src_keypoints, pred_keypoints, p=2) - def _accuracy(self, src_keypoints, pred_keypoints, iou_threshold): + def _accuracy(self, src_keypoints, pred_keypoints, distance_threshold): total_gt = len(src_keypoints) total_pred = len(pred_keypoints) if total_gt > 0 and total_pred > 0: # Define the matcher and distance matrix based on iou - matcher = Matcher(iou_threshold, - iou_threshold, + matcher = Matcher(distance_threshold, + distance_threshold, allow_low_quality_matches=False) match_quality_matrix = self._point_iou(src_keypoints, pred_keypoints) results = matcher(match_quality_matrix) diff --git a/milliontrees/datasets/TreePoints.py b/milliontrees/datasets/TreePoints.py index d647c62..32a5b63 100644 --- a/milliontrees/datasets/TreePoints.py +++ b/milliontrees/datasets/TreePoints.py @@ -30,26 +30,6 @@ class TreePointsDataset(MillionTreesDataset): Each image is annotated with the following metadata - location (int): location id - Website: - https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009180 - Original publication: - The following publications are included in this dataset - @article{Weinstein2020, - title={A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network.}, - author={Weinstein BG, Graves SJ, Marconi S, Singh A, Zare A, Stewart D, et al.}, - journal={PLoS Comput Biol}, - year={2021}, - doi={10.1371/journal.pcbi.1009180} - } - Original publication: - The following publications are included in this dataset - @article{Weinstein2020, - title={A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network.}, - author={Weinstein BG, Graves SJ, Marconi S, Singh A, Zare A, Stewart D, et al.}, - journal={PLoS Comput Biol}, - year={2021}, - doi={10.1371/journal.pcbi.1009180} - } License: This dataset is distributed under Creative Commons Attribution License """ diff --git a/milliontrees/datasets/TreePolygons.py b/milliontrees/datasets/TreePolygons.py index 47bc71a..08c2062 100644 --- a/milliontrees/datasets/TreePolygons.py +++ b/milliontrees/datasets/TreePolygons.py @@ -5,12 +5,15 @@ from PIL import Image, ImageDraw import pandas as pd import numpy as np -import torch from shapely import from_wkt from milliontrees.datasets.milliontrees_dataset import MillionTreesDataset from milliontrees.common.grouper import CombinatorialGrouper from milliontrees.common.metrics.all_metrics import Accuracy, Recall, F1 - +from albumentations import A, ToTensorV2 +from torchvision.tv_tensors import BoundingBoxes, Mask +import torchvision.transforms as transforms +from torchvision.ops import masks_to_boxes +import torch class TreePolygonsDataset(MillionTreesDataset): """The TreePolygons dataset is a collection of tree annotations annotated @@ -30,20 +33,6 @@ class TreePolygonsDataset(MillionTreesDataset): - location (int): location id - source (int): source id - Website: - https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009180 - Original publication: - # Ventura et al. 2022 - @article{ventura2022individual, - title={Individual tree detection in large-scale urban environments using high-resolution multispectral imagery}, - author={Ventura, Jonathan and Pawlak, Camille and Honsberger, Milo and Gonsalves, Cameron and Rice, Julian and Love, Natalie LR and Han, Skyler and Nguyen, Viet and Sugano, Keilana and Doremus, Jacqueline and others}, - journal={arXiv preprint arXiv:2208.10607}, - year={2022} - } - # TreeFormer - #etc.... - - License: This dataset is distributed under Creative Commons Attribution License """ @@ -90,11 +79,17 @@ def __init__(self, 'id_test': 'Test (ID/Cis)' } + unique_files = df.drop_duplicates(subset=['filename'], inplace=False).reset_index(drop=True) + unique_files['split_id'] = unique_files['split'].apply(lambda x: self._split_dict[x]) + self._split_array = unique_files['split_id'].values + df['split_id'] = df['split'].apply(lambda x: self._split_dict[x]) self._split_array = df['split_id'].values - + # Filenames - self._input_array = df['filename'].values + self._input_array = unique_files.filename + + # Create lookup table for which index to select for each filename self._input_lookup = df.groupby('filename').apply(lambda x: x.index.values).to_dict() # Convert each polygon to shapely objects @@ -105,7 +100,9 @@ def __init__(self, # Labels -> just 'Tree' self._n_classes = 1 - self._y_size = 2 + + # Not clear what this is, since we have a polygon, unknown size + self._y_size = 4 # Create source locations with a numeric ID df["source_id"] = df.source.astype('category').cat.codes @@ -129,12 +126,16 @@ def __getitem__(self, idx): # Any transformations are handled by the WILDSSubset # since different subsets (e.g., train vs test) might have different transforms x = self.get_input(idx) - y_polygon = self._y_array[idx] - - y = self.create_polygon_mask(x.shape[-2:], y_polygon) + y_indices = self._input_lookup[self._input_array[idx]] + y_polygons = [self._y_array[i] for i in y_indices] + mask_imgs = [self.create_polygon_mask(x.shape[-2:], y_polygon) for y_polygon in y_polygons] + masks = torch.concat([Mask(transforms.PILToTensor()(mask_img), dtype=torch.bool) for mask_img in mask_imgs]) + bboxes = BoundingBoxes(data=masks_to_boxes(masks), format='xyxy', canvas_size=x.size[::-1]) + metadata = self.metadata_array[idx] + targets = {"y": masks, "bboxes": bboxes, "labels": np.zeros(len(masks), dtype=int)} - return x, y, metadata + return metadata, x, targets def create_polygon_mask(self, image_size, vertices): """ @@ -198,18 +199,26 @@ def eval(self, y_pred, y_true, metadata, prediction_fn=None): return results, results_str + def get_input(self, idx): """ Args: - idx (int): Index of a data point Output: - - x (Tensor): Input features of the idx-th data point + - x (np.ndarray): Input features of the idx-th data point """ # All images are in the images folder - img_path = os.path.join(self.data_dir / 'images' / - self._input_array[idx]) + img_path = os.path.join(self._data_dir / 'images' / self._input_array[idx]) img = Image.open(img_path) - # Channels first input - img = torch.tensor(np.array(img)).permute(2, 0, 1) + img = np.array(img.convert('RGB'))/255 + img = np.array(img, dtype=np.float32) return img + + def _transform_(self): + self.transform = A.Compose([ + A.Resize(height=448, width=448, p=1.0), + ToTensorV2() + ]) + + return self.transform \ No newline at end of file diff --git a/tests/conftest.py b/tests/conftest.py index d6d0497..c43b013 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -119,11 +119,10 @@ def generate_polygon_dataset(image_dir): # Assuming you have a list of polygon coordinates and corresponding image file paths polygon_wkt = ["POLYGON((10 15, 50 15, 50 55, 10 55, 10 15))", "POLYGON((20 25, 60 25, 60 65, 20 65, 20 25))", "POLYGON((30 35, 70 35, 70 75, 30 75, 30 35))"] locations = [0,0,1] - resolution = [1,1,10] image_files = ['image1.jpg', 'image2.jpg', 'image3.jpg'] # Create a pandas DataFrame - df = pd.DataFrame({'polygon': polygon_wkt, 'filename': image_files, "source":locations,"resolution":resolution}) + df = pd.DataFrame({'polygon': polygon_wkt, 'filename': image_files, "source":locations}) # Create images and save them to disk within image_dir for i, row in df.iterrows(): diff --git a/tests/test_TreePoints.py b/tests/test_TreePoints.py index c66181f..e4ac47c 100644 --- a/tests/test_TreePoints.py +++ b/tests/test_TreePoints.py @@ -94,7 +94,8 @@ def test_TreePoints_eval(dataset): all_metadata = [] # Get predictions for the full test set for metadata, x, y_true in test_loader: - y_pred = [{'y': torch.tensor([[30.0, 70.0]]), 'label': torch.tensor([0]), 'score': torch.tensor([0.54])} for _ in range(x.shape[0])] + # Make one point close and one point far + y_pred = [{'y': torch.tensor([[133.0, 155.0], [100.0, 190.0]]), 'label': torch.tensor([0]), 'score': torch.tensor([0.54, 0.75])} for _ in range(x.shape[0])] # Accumulate y_true, y_pred, metadata all_y_pred.append(y_pred) all_y_true.append(y_true) @@ -102,7 +103,7 @@ def test_TreePoints_eval(dataset): # Evaluate eval_results, eval_string = dataset.eval(all_y_pred, all_y_true, all_metadata) - + eval_results["keypoint_acc_avg"] == 0.5 assert len(eval_results) assert "keypoint_acc_avg" in eval_results.keys() diff --git a/tests/test_TreePolygons.py b/tests/test_TreePolygons.py index ab8fc88..a55852b 100644 --- a/tests/test_TreePolygons.py +++ b/tests/test_TreePolygons.py @@ -1,7 +1,11 @@ from milliontrees.datasets.TreePolygons import TreePolygonsDataset +from milliontrees.common.data_loaders import get_train_loader, get_eval_loader + +import torch import pytest import os -import torchvision.transforms.v2 as transforms +import pandas as pd +import numpy as np # Check if running on hipergator if os.path.exists("/orange"): @@ -12,55 +16,133 @@ # Test structure without real annotation data to ensure format is correct def test_TreePolygons_generic(dataset): dataset = TreePolygonsDataset(download=False, root_dir=dataset) - for image, label, metadata in dataset: - assert image.shape == (3, 100, 100) - assert label.shape == (100, 100) - assert len(metadata) == 2 + for metadata, image, targets in dataset: + polygons, labels = targets["y"], targets["labels"] + assert image.shape == (100, 100, 3) + assert image.dtype == np.float32 + assert image.min() >= 0.0 and image.max() <= 1.0 + assert polygons.shape == (2, 2) + assert labels.shape == (2,) + assert metadata.shape == (2,) break - transform = transforms.Compose([ - transforms.Resize((448, 448)), - transforms.RandomHorizontalFlip(p=0.5), - transforms.ToTensor() - ]) - train_dataset = dataset.get_subset("train", transform=transform) + train_dataset = dataset.get_subset("train") - for image, label, metadata in train_dataset: + for metadata, image, targets in train_dataset: + polygons, labels = targets["y"], targets["labels"] assert image.shape == (3, 448, 448) - assert label.shape == (448, 448) - assert len(metadata) == 2 + assert image.dtype == torch.float32 + assert image.min() >= 0.0 and image.max() <= 1.0 + assert torch.is_tensor(polygons) + assert polygons.shape == (2, 2) + assert len(labels) == 2 + assert metadata.shape == (2,) + break + +@pytest.mark.parametrize("batch_size", [1, 2]) +def test_get_train_dataloader(dataset, batch_size): + dataset = TreePolygonsDataset(download=False, root_dir=dataset) + train_dataset = dataset.get_subset("train") + train_loader = get_train_loader('standard', train_dataset, batch_size=batch_size) + for metadata, x, targets in train_loader: + y = targets[0]["y"] + assert torch.is_tensor(targets[0]["y"]) + assert x.shape == (batch_size, 3, 448, 448) + assert x.dtype == torch.float32 + assert x.min() >= 0.0 and x.max() <= 1.0 + assert y.shape[1] == 2 + assert len(metadata) == batch_size + break + +def test_get_test_dataloader(dataset): + dataset = TreePolygonsDataset(download=False, root_dir=dataset) + test_dataset = dataset.get_subset("test") + + for metadata, image, targets in test_dataset: + polygons, labels = targets["y"], targets["labels"] + assert image.shape == (3,448, 448) + assert image.dtype == torch.float32 + assert image.min() >= 0.0 and image.max() <= 1.0 + assert polygons.shape == (2, 2) + assert labels.shape == (2,) + assert metadata.shape == (2,) break + + # Assert that test_dataset[0] == "image3.jpg" + metadata, image, targets = test_dataset[0] + assert metadata[1] == 1 + assert metadata[0] == "image3.jpg" + + test_loader = get_eval_loader('standard', test_dataset, batch_size=1) + for metadata, x, targets in test_loader: + y = targets[0]["y"] + assert torch.is_tensor(targets[0]["y"]) + assert x.shape == (1, 3, 448, 448) + assert x.dtype == torch.float32 + assert x.min() >= 0.0 and x.max() <= 1.0 + assert y.shape[1] == 2 + assert len(metadata) == 1 + break + +def test_TreePolygons_eval(dataset): + dataset = TreePolygonsDataset(download=False, root_dir=dataset) + test_dataset = dataset.get_subset("test") + test_loader = get_eval_loader('standard', test_dataset, batch_size=2) + + all_y_pred = [] + all_y_true = [] + all_metadata = [] + # Get predictions for the full test set + for metadata, x, y_true in test_loader: + y_pred = [{'y': torch.tensor([[134.4, 156.8]]), 'label': torch.tensor([0]), 'score': torch.tensor([0.54])} for _ in range(x.shape[0])] + # Accumulate y_true, y_pred, metadata + all_y_pred.append(y_pred) + all_y_true.append(y_true) + all_metadata.append(metadata) + + # Evaluate + eval_results, eval_string = dataset.eval(all_y_pred, all_y_true, all_metadata) + eval_results["keypoint_acc_avg"] == 0.5 + assert len(eval_results) + assert "keypoint_acc_avg" in eval_results.keys() # Test structure with real annotation data to ensure format is correct -# Do not run on github actions +# Do not run on github actions, long running. @pytest.mark.skipif(not on_hipergator, reason="Do not run on github actions") def test_TreePolygons_release(): + # Lookup size of the train dataset on disk dataset = TreePolygonsDataset(download=False, root_dir="/orange/ewhite/DeepForest/MillionTrees/") - transform = transforms.Compose([ - transforms.Resize((448, 448)), - transforms.RandomHorizontalFlip(p=0.5), - transforms.ToTensor() - ]) - train_dataset = dataset.get_subset("train", transform=transform) + train_dataset = dataset.get_subset("train") - for image, label, metadata in train_dataset: + for metadata, image, targets in train_dataset: + polygons = targets["y"] + labels = targets["labels"] assert image.shape == (3, 448, 448) - assert label.shape == (4,) + assert image.dtype == torch.float32 + assert image.min() >= 0.0 and image.max() <= 1.0 + assert polygons.shape[1] == 2 + assert metadata.shape[0] == 2 + + train_loader = get_train_loader('standard', train_dataset, batch_size=2) + for metadata, x, targets in train_loader: + y = targets[0]["y"] + assert torch.is_tensor(targets[0]["y"]) + assert x.shape == (2, 3, 448, 448) + assert x.dtype == torch.float32 + assert x.min() >= 0.0 and x.max() <= 1.0 + assert y.shape[1] == 2 assert len(metadata) == 2 break -# Test download structure def test_TreePolygons_download(tmpdir): dataset = TreePolygonsDataset(download=True, root_dir=tmpdir) - transform = transforms.Compose([ - transforms.Resize((448, 448)), - transforms.RandomHorizontalFlip(p=0.5), - transforms.ToTensor() - ]) - train_dataset = dataset.get_subset("train", transform=transform) + train_dataset = dataset.get_subset("train") - for image, label, metadata in train_dataset: + for metadata, image, targets in train_dataset: + polygons = targets["y"] assert image.shape == (3, 448, 448) - assert label.shape == (4,) - assert len(metadata) == 2 - break + assert image.dtype == torch.float32 + assert image.min() >= 0.0 and image.max() <= 1.0 + assert polygons.shape[1] == 2 + assert metadata.shape[0] == 2 + break \ No newline at end of file