This feature allows you to use RGB LED matrices driven by external drivers. It hooks into the RGBLIGHT system so you can use the same keycodes as RGBLIGHT to control it.
If you want to use single color LED's you should use the LED Matrix Subsystem instead.
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3731 RGB controller. To enable it, add this to your rules.mk
:
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3731
You can use between 1 and 4 IS31FL3731 IC's. Do not specify DRIVER_ADDR_<N>
defines for IC's that are not present on your keyboard. You can define the following items in config.h
:
Variable | Description | Default |
---|---|---|
ISSI_TIMEOUT |
(Optional) How long to wait for i2c messages, in milliseconds | 100 |
ISSI_PERSISTENCE |
(Optional) Retry failed messages this many times | 0 |
DRIVER_COUNT |
(Required) How many RGB driver IC's are present | |
DRIVER_LED_TOTAL |
(Required) How many RGB lights are present across all drivers | |
DRIVER_ADDR_1 |
(Required) Address for the first RGB driver | |
DRIVER_ADDR_2 |
(Optional) Address for the second RGB driver | |
DRIVER_ADDR_3 |
(Optional) Address for the third RGB driver | |
DRIVER_ADDR_4 |
(Optional) Address for the fourth RGB driver |
Here is an example using 2 drivers.
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
!> Note the parentheses, this is so when DRIVER_LED_TOTAL
is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
.
Define these arrays listing all the LEDs in your <keyboard>.c
:
const is31_led __flash g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, C1_3, C2_3, C3_3},
....
}
Where Cx_y
is the location of the LED in the matrix defined by the datasheet and the header file drivers/led/issi/is31fl3731.h
. The driver
is the index of the driver you defined in your config.h
(0
, 1
, 2
, or 3
).
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3733 RGB controller. To enable it, add this to your rules.mk
:
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3733
You can use between 1 and 4 IS31FL3733 IC's. Do not specify DRIVER_ADDR_<N>
defines for IC's that are not present on your keyboard. You can define the following items in config.h
:
Variable | Description | Default |
---|---|---|
ISSI_TIMEOUT |
(Optional) How long to wait for i2c messages, in milliseconds | 100 |
ISSI_PERSISTENCE |
(Optional) Retry failed messages this many times | 0 |
DRIVER_COUNT |
(Required) How many RGB driver IC's are present | |
DRIVER_LED_TOTAL |
(Required) How many RGB lights are present across all drivers | |
DRIVER_ADDR_1 |
(Required) Address for the first RGB driver | |
DRIVER_ADDR_2 |
(Optional) Address for the second RGB driver | |
DRIVER_ADDR_3 |
(Optional) Address for the third RGB driver | |
DRIVER_ADDR_4 |
(Optional) Address for the fourth RGB driver | |
DRIVER_SYNC_1 |
(Optional) Sync configuration for the first RGB driver | 0 |
DRIVER_SYNC_2 |
(Optional) Sync configuration for the second RGB driver | 0 |
DRIVER_SYNC_3 |
(Optional) Sync configuration for the third RGB driver | 0 |
DRIVER_SYNC_4 |
(Optional) Sync configuration for the fourth RGB driver | 0 |
Here is an example using 2 drivers.
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 00 <-> GND
// 01 <-> SCL
// 10 <-> SDA
// 11 <-> VCC
// ADDR1 represents A1:A0 of the 7-bit address.
// ADDR2 represents A3:A2 of the 7-bit address.
// The result is: 0b101(ADDR2)(ADDR1)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010011
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 58
#define DRIVER_2_LED_TOTAL 10
#define DRIVER_LED_TOTAL (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
!> Note the parentheses, this is so when DRIVER_LED_TOTAL
is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
.
Currently only 4 drivers are supported, but it would be trivial to support all 8 combinations.
Define these arrays listing all the LEDs in your <keyboard>.c
:
const is31_led __flash g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, B_1, A_1, C_1},
....
}
Where X_Y
is the location of the LED in the matrix defined by the datasheet and the header file drivers/led/issi/is31fl3733.h
. The driver
is the index of the driver you defined in your config.h
(0
, 1
, 2
, or 3
for now).
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3737 RGB controller. To enable it, add this to your rules.mk
:
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3737
You can use between 1 and 2 IS31FL3737 IC's. Do not specify DRIVER_ADDR_2
define for second IC if not present on your keyboard.
Configure the hardware via your config.h
:
Variable | Description | Default |
---|---|---|
ISSI_TIMEOUT |
(Optional) How long to wait for i2c messages, in milliseconds | 100 |
ISSI_PERSISTENCE |
(Optional) Retry failed messages this many times | 0 |
DRIVER_COUNT |
(Required) How many RGB driver IC's are present | |
DRIVER_LED_TOTAL |
(Required) How many RGB lights are present across all drivers | |
DRIVER_ADDR_1 |
(Required) Address for the first RGB driver | |
DRIVER_ADDR_2 |
(Optional) Address for the second RGB driver |
Here is an example using 2 drivers.
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0000 <-> GND
// 0101 <-> SCL
// 1010 <-> SDA
// 1111 <-> VCC
// ADDR represents A3:A0 of the 7-bit address.
// The result is: 0b101(ADDR)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010001
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 30
#define DRIVER_2_LED_TOTAL 36
#define DRIVER_LED_TOTAL (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
!> Note the parentheses, this is so when DRIVER_LED_TOTAL
is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
.
Currently only 2 drivers are supported, but it would be trivial to support all 4 combinations.
Define these arrays listing all the LEDs in your <keyboard>.c
:
const is31_led __flash g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, B_1, A_1, C_1},
....
}
Where X_Y
is the location of the LED in the matrix defined by the datasheet and the header file drivers/led/issi/is31fl3737.h
. The driver
is the index of the driver you defined in your config.h
(Only 0
, 1
for now).
There is basic support for addressable RGB matrix lighting with a WS2811/WS2812{a,b,c} addressable LED strand. To enable it, add this to your rules.mk
:
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = WS2812
Configure the hardware via your config.h
:
// The pin connected to the data pin of the LEDs
#define RGB_DI_PIN D7
// The number of LEDs connected
#define DRIVER_LED_TOTAL 70
There is basic support for APA102 based addressable LED strands. To enable it, add this to your rules.mk
:
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = APA102
Configure the hardware via your config.h
:
// The pin connected to the data pin of the LEDs
#define RGB_DI_PIN D7
// The pin connected to the clock pin of the LEDs
#define RGB_CI_PIN D6
// The number of LEDs connected
#define DRIVER_LED_TOTAL 70
There is basic support for addressable RGB matrix lighting with the SPI AW20216 RGB controller. To enable it, add this to your rules.mk
:
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = AW20216
You can use up to 2 AW20216 IC's. Do not specify DRIVER_<N>_xxx
defines for IC's that are not present on your keyboard. You can define the following items in config.h
:
Variable | Description | Default |
---|---|---|
DRIVER_1_CS |
(Required) MCU pin connected to first RGB driver chip select line | B13 |
DRIVER_2_CS |
(Optional) MCU pin connected to second RGB driver chip select line | |
DRIVER_1_EN |
(Required) MCU pin connected to first RGB driver hardware enable line | C13 |
DRIVER_2_EN |
(Optional) MCU pin connected to second RGB driver hardware enable line | |
DRIVER_1_LED_TOTAL |
(Required) How many RGB lights are connected to first RGB driver | |
DRIVER_2_LED_TOTAL |
(Optional) How many RGB lights are connected to second RGB driver | |
DRIVER_COUNT |
(Required) How many RGB driver IC's are present | |
DRIVER_LED_TOTAL |
(Required) How many RGB lights are present across all drivers | |
AW_SCALING_MAX |
(Optional) LED current scaling value (0-255, higher values mean LED is brighter at full PWM) | 150 |
AW_GLOBAL_CURRENT_MAX |
(Optional) Driver global current limit (0-255, higher values means the driver may consume more power) | 150 |
AW_SPI_DIVISOR |
(Optional) Clock divisor for SPI communication (powers of 2, smaller numbers means faster communication, should not be less than 4) | 4 |
Here is an example using 2 drivers.
#define DRIVER_1_CS B13
#define DRIVER_2_CS B14
// Hardware enable lines may be connected to the same pin
#define DRIVER_1_EN C13
#define DRIVER_2_EN C13
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 66
#define DRIVER_2_LED_TOTAL 32
#define DRIVER_LED_TOTAL (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
!> Note the parentheses, this is so when DRIVER_LED_TOTAL
is used in code and expanded, the values are added together before any additional math is applied to them. As an example, rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
will give very different results than rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
.
Define these arrays listing all the LEDs in your <keyboard>.c
:
const aw_led __flash g_aw_leds[DRIVER_LED_TOTAL] = {
/* Each AW20216 channel is controlled by a register at some offset between 0x00
* and 0xD7 inclusive.
* See drivers/awinic/aw20216.h for the mapping between register offsets and
* driver pin locations.
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{ 0, CS1_SW1, CS2_SW1, CS3_SW1 },
{ 0, CS4_SW1, CS5_SW1, CS6_SW1 },
{ 0, CS7_SW1, CS8_SW1, CS9_SW1 },
{ 0, CS10_SW1, CS11_SW1, CS12_SW1 },
{ 0, CS13_SW1, CS14_SW1, CS15_SW1 },
...
{ 1, CS1_SW1, CS2_SW1, CS3_SW1 },
{ 1, CS13_SW1, CS14_SW1, CS15_SW1 },
{ 1, CS16_SW1, CS17_SW1, CS18_SW1 },
{ 1, CS4_SW2, CS5_SW2, CS6_SW2 },
...
};
From this point forward the configuration is the same for all the drivers. The led_config_t
struct provides a key electrical matrix to led index lookup table, what the physical position of each LED is on the board, and what type of key or usage the LED if the LED represents. Here is a brief example:
led_config_t g_led_config = { {
// Key Matrix to LED Index
{ 5, NO_LED, NO_LED, 0 },
{ NO_LED, NO_LED, NO_LED, NO_LED },
{ 4, NO_LED, NO_LED, 1 },
{ 3, NO_LED, NO_LED, 2 }
}, {
// LED Index to Physical Position
{ 188, 16 }, { 187, 48 }, { 149, 64 }, { 112, 64 }, { 37, 48 }, { 38, 16 }
}, {
// LED Index to Flag
1, 4, 4, 4, 4, 1
} };
The first part, // Key Matrix to LED Index
, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, // LED Index to Physical Position
represents the LED's physical { x, y }
position on the keyboard. The default expected range of values for { x, y }
is the inclusive range { 0..224, 0..64 }
. This default expected range is due to effects that calculate the center of the keyboard for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents { x, y }
coordinate { 0, 0 }
and the bottom right of your keyboard represents { 224, 64 }
. Using this as a basis, you can use the following formula to calculate the physical position:
x = 224 / (NUMBER_OF_COLS - 1) * COL_POSITION
y = 64 / (NUMBER_OF_ROWS - 1) * ROW_POSITION
Where NUMBER_OF_COLS, NUMBER_OF_ROWS, COL_POSITION, & ROW_POSITION are all based on the physical layout of your keyboard, not the electrical layout.
As mentioned earlier, the center of the keyboard by default is expected to be { 112, 32 }
, but this can be changed if you want to more accurately calculate the LED's physical { x, y }
positions. Keyboard designers can implement #define RGB_MATRIX_CENTER { 112, 32 }
in their config.h file with the new center point of the keyboard, or where they want it to be allowing more possibilities for the { x, y }
values. Do note that the maximum value for x or y is 255, and the recommended maximum is 224 as this gives animations runoff room before they reset.
// LED Index to Flag
is a bitmask, whether or not a certain LEDs is of a certain type. It is recommended that LEDs are set to only 1 type.
Define | Value | Description |
---|---|---|
HAS_FLAGS(bits, flags) |
n/a | Evaluates to true if bits has all flags set |
HAS_ANY_FLAGS(bits, flags) |
n/a | Evaluates to true if bits has any flags set |
LED_FLAG_NONE |
0x00 |
If this LED has no flags |
LED_FLAG_ALL |
0xFF |
If this LED has all flags |
LED_FLAG_MODIFIER |
0x01 |
If the LED is on a modifier key |
LED_FLAG_UNDERGLOW |
0x02 |
If the LED is for underglow |
LED_FLAG_KEYLIGHT |
0x04 |
If the LED is for key backlight |
LED_FLAG_INDICATOR |
0x08 |
If the LED is for keyboard state indication |
All RGB keycodes are currently shared with the RGBLIGHT system:
Key | Aliases | Description |
---|---|---|
RGB_TOG |
Toggle RGB lighting on or off | |
RGB_MODE_FORWARD |
RGB_MOD |
Cycle through modes, reverse direction when Shift is held |
RGB_MODE_REVERSE |
RGB_RMOD |
Cycle through modes in reverse, forward direction when Shift is held |
RGB_HUI |
Increase hue, decrease hue when Shift is held | |
RGB_HUD |
Decrease hue, increase hue when Shift is held | |
RGB_SAI |
Increase saturation, decrease saturation when Shift is held | |
RGB_SAD |
Decrease saturation, increase saturation when Shift is held | |
RGB_VAI |
Increase value (brightness), decrease value when Shift is held | |
RGB_VAD |
Decrease value (brightness), increase value when Shift is held | |
RGB_SPI |
Increase effect speed (does not support eeprom yet), decrease speed when Shift is held | |
RGB_SPD |
Decrease effect speed (does not support eeprom yet), increase speed when Shift is held | |
RGB_MODE_PLAIN |
RGB_M_P |
Static (no animation) mode |
RGB_MODE_BREATHE |
RGB_M_B |
Breathing animation mode |
RGB_MODE_RAINBOW |
RGB_M_R |
Full gradient scrolling left to right (uses the RGB_MATRIX_CYCLE_LEFT_RIGHT mode) |
RGB_MODE_SWIRL |
RGB_M_SW |
Full gradient spinning pinwheel around center of keyboard (uses RGB_MATRIX_CYCLE_PINWHEEL mode) |
RGB_MODE_*
keycodes will generally work, but not all of the modes are currently mapped to the correct effects for the RGB Matrix system.
RGB_MODE_PLAIN
, RGB_MODE_BREATHE
, RGB_MODE_RAINBOW
, and RGB_MATRIX_SWIRL
are the only ones that are mapped properly. The rest don't have a direct equivalent, and are not mapped.
!> By default, if you have both the RGB Light and the RGB Matrix feature enabled, these keycodes will work for both features, at the same time. You can disable the keycode functionality by defining the *_DISABLE_KEYCODES
option for the specific feature.
All effects have been configured to support current configuration values (Hue, Saturation, Value, & Speed) unless otherwise noted below. These are the effects that are currently available:
enum rgb_matrix_effects {
RGB_MATRIX_NONE = 0,
RGB_MATRIX_SOLID_COLOR = 1, // Static single hue, no speed support
RGB_MATRIX_ALPHAS_MODS, // Static dual hue, speed is hue for secondary hue
RGB_MATRIX_GRADIENT_UP_DOWN, // Static gradient top to bottom, speed controls how much gradient changes
RGB_MATRIX_GRADIENT_LEFT_RIGHT, // Static gradient left to right, speed controls how much gradient changes
RGB_MATRIX_BREATHING, // Single hue brightness cycling animation
RGB_MATRIX_BAND_SAT, // Single hue band fading saturation scrolling left to right
RGB_MATRIX_BAND_VAL, // Single hue band fading brightness scrolling left to right
RGB_MATRIX_BAND_PINWHEEL_SAT, // Single hue 3 blade spinning pinwheel fades saturation
RGB_MATRIX_BAND_PINWHEEL_VAL, // Single hue 3 blade spinning pinwheel fades brightness
RGB_MATRIX_BAND_SPIRAL_SAT, // Single hue spinning spiral fades saturation
RGB_MATRIX_BAND_SPIRAL_VAL, // Single hue spinning spiral fades brightness
RGB_MATRIX_CYCLE_ALL, // Full keyboard solid hue cycling through full gradient
RGB_MATRIX_CYCLE_LEFT_RIGHT, // Full gradient scrolling left to right
RGB_MATRIX_CYCLE_UP_DOWN, // Full gradient scrolling top to bottom
RGB_MATRIX_CYCLE_OUT_IN, // Full gradient scrolling out to in
RGB_MATRIX_CYCLE_OUT_IN_DUAL, // Full dual gradients scrolling out to in
RGB_MATRIX_RAINBOW_MOVING_CHEVRON, // Full gradent Chevron shapped scrolling left to right
RGB_MATRIX_CYCLE_PINWHEEL, // Full gradient spinning pinwheel around center of keyboard
RGB_MATRIX_CYCLE_SPIRAL, // Full gradient spinning spiral around center of keyboard
RGB_MATRIX_DUAL_BEACON, // Full gradient spinning around center of keyboard
RGB_MATRIX_RAINBOW_BEACON, // Full tighter gradient spinning around center of keyboard
RGB_MATRIX_RAINBOW_PINWHEELS, // Full dual gradients spinning two halfs of keyboard
RGB_MATRIX_RAINDROPS, // Randomly changes a single key's hue
RGB_MATRIX_JELLYBEAN_RAINDROPS, // Randomly changes a single key's hue and saturation
RGB_MATRIX_HUE_BREATHING, // Hue shifts up a slight ammount at the same time, then shifts back
RGB_MATRIX_HUE_PENDULUM, // Hue shifts up a slight ammount in a wave to the right, then back to the left
RGB_MATRIX_HUE_WAVE, // Hue shifts up a slight ammount and then back down in a wave to the right
#if define(RGB_MATRIX_FRAMEBUFFER_EFFECTS)
RGB_MATRIX_TYPING_HEATMAP, // How hot is your WPM!
RGB_MATRIX_DIGITAL_RAIN, // That famous computer simulation
#endif
#if defined(RGB_MATRIX_KEYPRESSES) || defined(RGB_MATRIX_KEYRELEASES)
RGB_MATRIX_SOLID_REACTIVE_SIMPLE, // Pulses keys hit to hue & value then fades value out
RGB_MATRIX_SOLID_REACTIVE, // Static single hue, pulses keys hit to shifted hue then fades to current hue
RGB_MATRIX_SOLID_REACTIVE_WIDE // Hue & value pulse near a single key hit then fades value out
RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE // Hue & value pulse near multiple key hits then fades value out
RGB_MATRIX_SOLID_REACTIVE_CROSS // Hue & value pulse the same column and row of a single key hit then fades value out
RGB_MATRIX_SOLID_REACTIVE_MULTICROSS // Hue & value pulse the same column and row of multiple key hits then fades value out
RGB_MATRIX_SOLID_REACTIVE_NEXUS // Hue & value pulse away on the same column and row of a single key hit then fades value out
RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS // Hue & value pulse away on the same column and row of multiple key hits then fades value out
RGB_MATRIX_SPLASH, // Full gradient & value pulse away from a single key hit then fades value out
RGB_MATRIX_MULTISPLASH, // Full gradient & value pulse away from multiple key hits then fades value out
RGB_MATRIX_SOLID_SPLASH, // Hue & value pulse away from a single key hit then fades value out
RGB_MATRIX_SOLID_MULTISPLASH, // Hue & value pulse away from multiple key hits then fades value out
#endif
RGB_MATRIX_EFFECT_MAX
};
You can disable a single effect by defining DISABLE_[EFFECT_NAME]
in your config.h
:
Define | Description |
---|---|
#define DISABLE_RGB_MATRIX_ALPHAS_MODS |
Disables RGB_MATRIX_ALPHAS_MODS |
#define DISABLE_RGB_MATRIX_GRADIENT_UP_DOWN |
Disables RGB_MATRIX_GRADIENT_UP_DOWN |
#define DISABLE_RGB_MATRIX_GRADIENT_LEFT_RIGHT |
Disables MATRIX_GRADIENT_LEFT_RIGHT |
#define DISABLE_RGB_MATRIX_BREATHING |
Disables RGB_MATRIX_BREATHING |
#define DISABLE_RGB_MATRIX_BAND_SAT |
Disables RGB_MATRIX_BAND_SAT |
#define DISABLE_RGB_MATRIX_BAND_VAL |
Disables RGB_MATRIX_BAND_VAL |
#define DISABLE_RGB_MATRIX_BAND_PINWHEEL_SAT |
Disables RGB_MATRIX_BAND_PINWHEEL_SAT |
#define DISABLE_RGB_MATRIX_BAND_PINWHEEL_VAL |
Disables RGB_MATRIX_BAND_PINWHEEL_VAL |
#define DISABLE_RGB_MATRIX_BAND_SPIRAL_SAT |
Disables RGB_MATRIX_BAND_SPIRAL_SAT |
#define DISABLE_RGB_MATRIX_BAND_SPIRAL_VAL |
Disables RGB_MATRIX_BAND_SPIRAL_VAL |
#define DISABLE_RGB_MATRIX_CYCLE_ALL |
Disables RGB_MATRIX_CYCLE_ALL |
#define DISABLE_RGB_MATRIX_CYCLE_LEFT_RIGHT |
Disables RGB_MATRIX_CYCLE_LEFT_RIGHT |
#define DISABLE_RGB_MATRIX_CYCLE_UP_DOWN |
Disables RGB_MATRIX_CYCLE_UP_DOWN |
#define DISABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON |
Disables RGB_MATRIX_RAINBOW_MOVING_CHEVRON |
#define DISABLE_RGB_MATRIX_CYCLE_OUT_IN |
Disables RGB_MATRIX_CYCLE_OUT_IN |
#define DISABLE_RGB_MATRIX_CYCLE_OUT_IN_DUAL |
Disables RGB_MATRIX_CYCLE_OUT_IN_DUAL |
#define DISABLE_RGB_MATRIX_CYCLE_PINWHEEL |
Disables RGB_MATRIX_CYCLE_PINWHEEL |
#define DISABLE_RGB_MATRIX_CYCLE_SPIRAL |
Disables RGB_MATRIX_CYCLE_SPIRAL |
#define DISABLE_RGB_MATRIX_DUAL_BEACON |
Disables RGB_MATRIX_DUAL_BEACON |
#define DISABLE_RGB_MATRIX_RAINBOW_BEACON |
Disables RGB_MATRIX_RAINBOW_BEACON |
#define DISABLE_RGB_MATRIX_RAINBOW_PINWHEELS |
Disables RGB_MATRIX_RAINBOW_PINWHEELS |
#define DISABLE_RGB_MATRIX_RAINDROPS |
Disables RGB_MATRIX_RAINDROPS |
#define DISABLE_RGB_MATRIX_JELLYBEAN_RAINDROPS |
Disables RGB_MATRIX_JELLYBEAN_RAINDROPS |
#define DISABLE_RGB_MATRIX_HUE_BREATHING |
Disables RGB_MATRIX_HUE_BREATHING |
#define DISABLE_RGB_MATRIX_HUE_PENDULUM |
Disables RGB_MATRIX_HUE_PENDULUM |
#define DISABLE_RGB_MATRIX_HUE_WAVE |
Disables RGB_MATRIX_HUE_WAVE |
#define DISABLE_RGB_MATRIX_TYPING_HEATMAP |
Disables RGB_MATRIX_TYPING_HEATMAP |
#define DISABLE_RGB_MATRIX_DIGITAL_RAIN |
Disables RGB_MATRIX_DIGITAL_RAIN |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_SIMPLE |
Disables RGB_MATRIX_SOLID_REACTIVE_SIMPLE |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE |
Disables RGB_MATRIX_SOLID_REACTIVE |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_WIDE |
Disables RGB_MATRIX_SOLID_REACTIVE_WIDE |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE |
Disables RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_CROSS |
Disables RGB_MATRIX_SOLID_REACTIVE_CROSS |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTICROSS |
Disables RGB_MATRIX_SOLID_REACTIVE_MULTICROSS |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_NEXUS |
Disables RGB_MATRIX_SOLID_REACTIVE_NEXUS |
#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS |
Disables RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS |
#define DISABLE_RGB_MATRIX_SPLASH |
Disables RGB_MATRIX_SPLASH |
#define DISABLE_RGB_MATRIX_MULTISPLASH |
Disables RGB_MATRIX_MULTISPLASH |
#define DISABLE_RGB_MATRIX_SOLID_SPLASH |
Disables RGB_MATRIX_SOLID_SPLASH |
#define DISABLE_RGB_MATRIX_SOLID_MULTISPLASH |
Disables RGB_MATRIX_SOLID_MULTISPLASH |
This effect will color the RGB matrix according to a heatmap of recently pressed keys. Whenever a key is pressed its "temperature" increases as well as that of its neighboring keys. The temperature of each key is then decreased automatically every 25 milliseconds by default.
In order to change the delay of temperature decrease define
RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS
:
#define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS 50
By setting RGB_MATRIX_CUSTOM_USER
(and/or RGB_MATRIX_CUSTOM_KB
) in rules.mk
, new effects can be defined directly from userspace, without having to edit any QMK core files.
To declare new effects, create a new rgb_matrix_user/kb.inc
that looks something like this:
rgb_matrix_user.inc
should go in the root of the keymap directory.
rgb_matrix_kb.inc
should go in the root of the keyboard directory.
To use custom effects in your code, simply prepend RGB_MATRIX_CUSTOM_
to the effect name specified in RGB_MATRIX_EFFECT()
. For example, an effect declared as RGB_MATRIX_EFFECT(my_cool_effect)
would be referenced with:
rgb_matrix_mode(RGB_MATRIX_CUSTOM_my_cool_effect);
// !!! DO NOT ADD #pragma once !!! //
// Step 1.
// Declare custom effects using the RGB_MATRIX_EFFECT macro
// (note the lack of semicolon after the macro!)
RGB_MATRIX_EFFECT(my_cool_effect)
RGB_MATRIX_EFFECT(my_cool_effect2)
// Step 2.
// Define effects inside the `RGB_MATRIX_CUSTOM_EFFECT_IMPLS` ifdef block
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
// e.g: A simple effect, self-contained within a single method
static bool my_cool_effect(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
for (uint8_t i = led_min; i < led_max; i++) {
rgb_matrix_set_color(i, 0xff, 0xff, 0x00);
}
return led_max < DRIVER_LED_TOTAL;
}
// e.g: A more complex effect, relying on external methods and state, with
// dedicated init and run methods
static uint8_t some_global_state;
static void my_cool_effect2_complex_init(effect_params_t* params) {
some_global_state = 1;
}
static bool my_cool_effect2_complex_run(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
for (uint8_t i = led_min; i < led_max; i++) {
rgb_matrix_set_color(i, 0xff, some_global_state++, 0xff);
}
return led_max < DRIVER_LED_TOTAL;
}
static bool my_cool_effect2(effect_params_t* params) {
if (params->init) my_cool_effect2_complex_init(params);
return my_cool_effect2_complex_run(params);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
For inspiration and examples, check out the built-in effects under quantum/rgb_matrix/animations/
.
These are shorthands to popular colors. The RGB
ones can be passed to the setrgb
functions, while the HSV
ones to the sethsv
functions.
RGB | HSV |
---|---|
RGB_AZURE |
HSV_AZURE |
RGB_BLACK /RGB_OFF |
HSV_BLACK /HSV_OFF |
RGB_BLUE |
HSV_BLUE |
RGB_CHARTREUSE |
HSV_CHARTREUSE |
RGB_CORAL |
HSV_CORAL |
RGB_CYAN |
HSV_CYAN |
RGB_GOLD |
HSV_GOLD |
RGB_GOLDENROD |
HSV_GOLDENROD |
RGB_GREEN |
HSV_GREEN |
RGB_MAGENTA |
HSV_MAGENTA |
RGB_ORANGE |
HSV_ORANGE |
RGB_PINK |
HSV_PINK |
RGB_PURPLE |
HSV_PURPLE |
RGB_RED |
HSV_RED |
RGB_SPRINGGREEN |
HSV_SPRINGGREEN |
RGB_TEAL |
HSV_TEAL |
RGB_TURQUOISE |
HSV_TURQUOISE |
RGB_WHITE |
HSV_WHITE |
RGB_YELLOW |
HSV_YELLOW |
These are defined in color.h
. Feel free to add to this list!
#define RGB_MATRIX_KEYPRESSES // reacts to keypresses
#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (instead of keypresses)
#define RGB_MATRIX_FRAMEBUFFER_EFFECTS // enable framebuffer effects
#define RGB_DISABLE_TIMEOUT 0 // number of milliseconds to wait until rgb automatically turns off
#define RGB_DISABLE_AFTER_TIMEOUT 0 // OBSOLETE: number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED // turn off effects when suspended
#define RGB_MATRIX_LED_PROCESS_LIMIT (DRIVER_LED_TOTAL + 4) / 5 // limits the number of LEDs to process in an animation per task run (increases keyboard responsiveness)
#define RGB_MATRIX_LED_FLUSH_LIMIT 16 // limits in milliseconds how frequently an animation will update the LEDs. 16 (16ms) is equivalent to limiting to 60fps (increases keyboard responsiveness)
#define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
#define RGB_MATRIX_STARTUP_MODE RGB_MATRIX_CYCLE_LEFT_RIGHT // Sets the default mode, if none has been set
#define RGB_MATRIX_STARTUP_HUE 0 // Sets the default hue value, if none has been set
#define RGB_MATRIX_STARTUP_SAT 255 // Sets the default saturation value, if none has been set
#define RGB_MATRIX_STARTUP_VAL RGB_MATRIX_MAXIMUM_BRIGHTNESS // Sets the default brightness value, if none has been set
#define RGB_MATRIX_STARTUP_SPD 127 // Sets the default animation speed, if none has been set
#define RGB_MATRIX_DISABLE_KEYCODES // disables control of rgb matrix by keycodes (must use code functions to control the feature)
#define RGB_MATRIX_SPLIT { X, Y } // (Optional) For split keyboards, the number of LEDs connected on each half. X = left, Y = Right.
// If RGB_MATRIX_KEYPRESSES or RGB_MATRIX_KEYRELEASES is enabled, you also will want to enable SPLIT_TRANSPORT_MIRROR
The EEPROM for it is currently shared with the LED Matrix system (it's generally assumed only one feature would be used at a time), but could be configured to use its own 32bit address with:
#define EECONFIG_RGB_MATRIX (uint32_t *)28
Where 28
is an unused index from eeconfig.h
.
Function | Description |
---|---|
rgb_matrix_set_color_all(r, g, b) |
Set all of the LEDs to the given RGB value, where r /g /b are between 0 and 255 (not written to EEPROM) |
rgb_matrix_set_color(index, r, g, b) |
Set a single LED to the given RGB value, where r /g /b are between 0 and 255, and index is between 0 and DRIVER_LED_TOTAL (not written to EEPROM) |
Function | Description |
---|---|
rgb_matrix_toggle() |
Toggle effect range LEDs between on and off |
rgb_matrix_toggle_noeeprom() |
Toggle effect range LEDs between on and off (not written to EEPROM) |
rgb_matrix_enable() |
Turn effect range LEDs on, based on their previous state |
rgb_matrix_enable_noeeprom() |
Turn effect range LEDs on, based on their previous state (not written to EEPROM) |
rgb_matrix_disable() |
Turn effect range LEDs off, based on their previous state |
rgb_matrix_disable_noeeprom() |
Turn effect range LEDs off, based on their previous state (not written to EEPROM) |
Function | Description |
---|---|
rgb_matrix_mode(mode) |
Set the mode, if RGB animations are enabled |
rgb_matrix_mode_noeeprom(mode) |
Set the mode, if RGB animations are enabled (not written to EEPROM) |
rgb_matrix_step() |
Change the mode to the next RGB animation in the list of enabled RGB animations |
rgb_matrix_step_noeeprom() |
Change the mode to the next RGB animation in the list of enabled RGB animations (not written to EEPROM) |
rgb_matrix_step_reverse() |
Change the mode to the previous RGB animation in the list of enabled RGB animations |
rgb_matrix_step_reverse_noeeprom() |
Change the mode to the previous RGB animation in the list of enabled RGB animations (not written to EEPROM) |
rgb_matrix_increase_speed() |
Increase the speed of the animations |
rgb_matrix_increase_speed_noeeprom() |
Increase the speed of the animations (not written to EEPROM) |
rgb_matrix_decrease_speed() |
Decrease the speed of the animations |
rgb_matrix_decrease_speed_noeeprom() |
Decrease the speed of the animations (not written to EEPROM) |
rgb_matrix_set_speed(speed) |
Set the speed of the animations to the given value where speed is between 0 and 255 |
rgb_matrix_set_speed_noeeprom(speed) |
Set the speed of the animations to the given value where speed is between 0 and 255 (not written to EEPROM) |
Function | Description |
---|---|
rgb_matrix_increase_hue() |
Increase the hue for effect range LEDs. This wraps around at maximum hue |
rgb_matrix_increase_hue_noeeprom() |
Increase the hue for effect range LEDs. This wraps around at maximum hue (not written to EEPROM) |
rgb_matrix_decrease_hue() |
Decrease the hue for effect range LEDs. This wraps around at minimum hue |
rgb_matrix_decrease_hue_noeeprom() |
Decrease the hue for effect range LEDs. This wraps around at minimum hue (not written to EEPROM) |
rgb_matrix_increase_sat() |
Increase the saturation for effect range LEDs. This wraps around at maximum saturation |
rgb_matrix_increase_sat_noeeprom() |
Increase the saturation for effect range LEDs. This wraps around at maximum saturation (not written to EEPROM) |
rgb_matrix_decrease_sat() |
Decrease the saturation for effect range LEDs. This wraps around at minimum saturation |
rgb_matrix_decrease_sat_noeeprom() |
Decrease the saturation for effect range LEDs. This wraps around at minimum saturation (not written to EEPROM) |
rgb_matrix_increase_val() |
Increase the value for effect range LEDs. This wraps around at maximum value |
rgb_matrix_increase_val_noeeprom() |
Increase the value for effect range LEDs. This wraps around at maximum value (not written to EEPROM) |
rgb_matrix_decrease_val() |
Decrease the value for effect range LEDs. This wraps around at minimum value |
rgb_matrix_decrease_val_noeeprom() |
Decrease the value for effect range LEDs. This wraps around at minimum value (not written to EEPROM) |
rgb_matrix_sethsv(h, s, v) |
Set LEDs to the given HSV value where h /s /v are between 0 and 255 |
rgb_matrix_sethsv_noeeprom(h, s, v) |
Set LEDs to the given HSV value where h /s /v are between 0 and 255 (not written to EEPROM) |
Function | Description |
---|---|
rgb_matrix_is_enabled() |
Gets current on/off status |
rgb_matrix_get_mode() |
Gets current mode |
rgb_matrix_get_hue() |
Gets current hue |
rgb_matrix_get_sat() |
Gets current sat |
rgb_matrix_get_val() |
Gets current val |
rgb_matrix_get_hsv() |
Gets hue, sat, and val and returns a HSV structure |
rgb_matrix_get_speed() |
Gets current speed |
rgb_matrix_get_suspend_state() |
Gets current suspend state |
If you want to set custom indicators, such as an LED for Caps Lock, or layer indication, you can use the rgb_matrix_indicators_kb
or rgb_matrix_indicators_user
function for that:
void rgb_matrix_indicators_kb(void) {
rgb_matrix_set_color(index, red, green, blue);
}
In addition, there are the advanced indicator functions. These are aimed at those with heavily customized displays, where rendering every LED per cycle is expensive. Such as some of the "drashna" layouts. This includes a special macro to help make this easier to use: RGB_MATRIX_INDICATOR_SET_COLOR(i, r, g, b)
.
void rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
RGB_MATRIX_INDICATOR_SET_COLOR(index, red, green, blue);
}
Caps Lock indicator on alphanumeric flagged keys:
void rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
if (host_keyboard_led_state().caps_lock) {
for (uint8_t i = led_min; i <= led_max; i++) {
if (g_led_config.flags[i] & LED_FLAG_KEYLIGHT) {
rgb_matrix_set_color(i, RGB_RED);
}
}
}
}
Layer indicator on all flagged keys:
void rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
for (uint8_t i = led_min; i <= led_max; i++) {
switch(get_highest_layer(layer_state|default_layer_state)) {
case RAISE:
rgb_matrix_set_color(i, RGB_BLUE);
break;
case LOWER:
rgb_matrix_set_color(i, RGB_YELLOW);
break;
default:
break;
}
}
}
This example sets the modifiers to be a specific color based on the layer state. You can use a switch case here, instead, if you would like. This uses HSV and then converts to RGB, because this allows the brightness to be limited (important when using the WS2812 driver).
void rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
HSV hsv = {0, 255, 255};
if (layer_state_is(layer_state, 2)) {
hsv = {130, 255, 255};
} else {
hsv = {30, 255, 255};
}
if (hsv.v > rgb_matrix_get_val()) {
hsv.v = rgb_matrix_get_val();
}
RGB rgb = hsv_to_rgb(hsv);
for (uint8_t i = led_min; i <= led_max; i++) {
if (HAS_FLAGS(g_led_config.flags[i], 0x01)) { // 0x01 == LED_FLAG_MODIFIER
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
}
}
If you want to indicate a Host LED status (caps lock, num lock, etc), you can use something like this to light up the caps lock key:
void rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
if (host_keyboard_led_state().caps_lock) {
RGB_MATRIX_INDICATOR_SET_COLOR(5, 255, 255, 255); // assuming caps lock is at led #5
} else {
RGB_MATRIX_INDICATOR_SET_COLOR(5, 0, 0, 0);
}
}