forked from vijaydwivedi75/gnn-lspe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_ZINC_graph_regression.py
552 lines (477 loc) · 18.8 KB
/
main_ZINC_graph_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"""
IMPORTING LIBS
"""
import argparse
import glob
import json
import os
import random
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.optim as optim
import wandb
from torch.utils.data import DataLoader
from tqdm import tqdm
from data.data import LoadData # import dataset
from nets.ZINC_graph_regression.load_net import gnn_model # import all GNNS
class DotDict(dict):
def __init__(self, **kwds):
self.update(kwds)
self.__dict__ = self
def gpu_setup(use_gpu, gpu_id):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if torch.cuda.is_available() and use_gpu:
print("cuda available with GPU:", torch.cuda.get_device_name(0))
device = torch.device("cuda")
else:
print("cuda not available")
device = torch.device("cpu")
return device
"""
VIEWING MODEL CONFIG AND PARAMS
"""
def view_model_param(MODEL_NAME, net_params):
model = gnn_model(MODEL_NAME, net_params)
total_param = 0
print("MODEL DETAILS:\n")
for param in model.parameters():
total_param += np.prod(list(param.data.size()))
print("MODEL/Total parameters:", MODEL_NAME, total_param)
return total_param
"""
TRAINING CODE
"""
def train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs):
t0 = time.time()
per_epoch_time = []
DATASET_NAME = dataset.name
if net_params["pe_init"] == "lap_pe":
tt = time.time()
print("[!] -LapPE: Initializing graph positional encoding with Laplacian PE.")
dataset._add_lap_positional_encodings(net_params["pos_enc_dim"])
print("[!] Time taken: ", time.time() - tt)
elif net_params["pe_init"] == "rand_walk":
tt = time.time()
print(
"[!] -LSPE: Initializing graph positional encoding with rand walk features."
)
dataset._init_positional_encodings(
net_params["pos_enc_dim"], net_params["pe_init"]
)
print("[!] Time taken: ", time.time() - tt)
tt = time.time()
print(
"[!] -LSPE (For viz later): Adding lapeigvecs to key 'eigvec' for every graph."
)
dataset._add_eig_vecs(net_params["pos_enc_dim"])
print("[!] Time taken: ", time.time() - tt)
if MODEL_NAME in ["SAN", "GraphiT"]:
if net_params["full_graph"]:
st = time.time()
print("[!] Adding full graph connectivity..")
dataset._make_full_graph() if MODEL_NAME == "SAN" else dataset._make_full_graph(
(net_params["p_steps"], net_params["gamma"])
)
print("Time taken to add full graph connectivity: ", time.time() - st)
trainset, valset, testset = dataset.train, dataset.val, dataset.test
root_log_dir, root_ckpt_dir, write_file_name, write_config_file, viz_dir = dirs
device = net_params["device"]
# Write the network and optimization hyper-parameters in folder config/
with open(write_config_file + ".txt", "w") as f:
f.write(
"""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n\nTotal Parameters: {}\n\n""".format(
DATASET_NAME, MODEL_NAME, params, net_params, net_params["total_param"]
)
)
# setting seeds
random.seed(params["seed"])
np.random.seed(params["seed"])
torch.manual_seed(params["seed"])
if device.type == "cuda":
torch.cuda.manual_seed(params["seed"])
torch.cuda.manual_seed_all(params["seed"])
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
wandb.run.summary["Training Graphs"] = len(trainset)
wandb.run.summary["Validation Graphs"] = len(valset)
wandb.run.summary["Test Graphs"] = len(testset)
model = gnn_model(MODEL_NAME, net_params)
model = model.to(device)
optimizer = optim.Adam(
model.parameters(), lr=params["init_lr"], weight_decay=params["weight_decay"]
)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min",
factor=params["lr_reduce_factor"],
patience=params["lr_schedule_patience"],
verbose=True,
)
epoch_train_losses, epoch_val_losses = [], []
epoch_train_MAEs, epoch_val_MAEs = [], []
# import train functions for all GNNs
from train.train_ZINC_graph_regression import (
evaluate_network_sparse as evaluate_network,
)
from train.train_ZINC_graph_regression import train_epoch_sparse as train_epoch
train_loader = DataLoader(
trainset,
num_workers=4,
batch_size=params["batch_size"],
shuffle=True,
collate_fn=dataset.collate,
)
val_loader = DataLoader(
valset,
num_workers=4,
batch_size=params["batch_size"],
shuffle=False,
collate_fn=dataset.collate,
)
test_loader = DataLoader(
testset,
num_workers=4,
batch_size=params["batch_size"],
shuffle=False,
collate_fn=dataset.collate,
)
# At any point you can hit Ctrl + C to break out of training early.
try:
with tqdm(range(params["epochs"])) as t:
for epoch in t:
t.set_description("Epoch %d" % epoch)
start = time.time()
epoch_train_loss, epoch_train_mae, optimizer = train_epoch(
model, optimizer, device, train_loader, epoch
)
epoch_val_loss, epoch_val_mae, __ = evaluate_network(
model, device, val_loader, epoch
)
epoch_test_loss, epoch_test_mae, __ = evaluate_network(
model, device, test_loader, epoch
)
del __
epoch_train_losses.append(epoch_train_loss)
epoch_val_losses.append(epoch_val_loss)
epoch_train_MAEs.append(epoch_train_mae)
epoch_val_MAEs.append(epoch_val_mae)
wandb.log(data={"Training Loss": epoch_train_loss}, step=epoch)
wandb.log(data={"Validation Loss": epoch_val_loss}, step=epoch)
wandb.log(data={"Training MAE": epoch_train_mae}, step=epoch)
wandb.log(data={"Validation MAE": epoch_val_mae}, step=epoch)
wandb.log(data={"Test MAE": epoch_test_mae}, step=epoch)
wandb.log(
data={"Learning Rate": optimizer.param_groups[0]["lr"]}, step=epoch
)
t.set_postfix(
time=time.time() - start,
lr=optimizer.param_groups[0]["lr"],
train_loss=epoch_train_loss,
val_loss=epoch_val_loss,
train_MAE=epoch_train_mae,
val_MAE=epoch_val_mae,
test_MAE=epoch_test_mae,
)
per_epoch_time.append(time.time() - start)
# Saving checkpoint
ckpt_dir = os.path.join(root_ckpt_dir, "RUN_")
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
torch.save(
model.state_dict(),
"{}.pkl".format(ckpt_dir + "/epoch_" + str(epoch)),
)
files = glob.glob(ckpt_dir + "/*.pkl")
for file in files:
epoch_nb = file.split("_")[-1]
epoch_nb = int(epoch_nb.split(".")[0])
if epoch_nb < epoch - 1:
os.remove(file)
scheduler.step(epoch_val_loss)
if optimizer.param_groups[0]["lr"] < params["min_lr"]:
print("\n!! LR EQUAL TO MIN LR SET.")
break
# Stop training after params['max_time'] hours
if time.time() - t0 > params["max_time"] * 3600:
print("-" * 89)
print(
"Max_time for training elapsed {:.2f} hours, so stopping".format(
params["max_time"]
)
)
break
except KeyboardInterrupt:
print("-" * 89)
print("Exiting from training early because of KeyboardInterrupt")
test_loss_lapeig, test_mae, g_outs_test = evaluate_network(
model, device, test_loader, epoch
)
train_loss_lapeig, train_mae, g_outs_train = evaluate_network(
model, device, train_loader, epoch
)
wandb.run.summary["Test MAE"] = test_mae
wandb.run.summary["Train MAE"] = train_mae
wandb.run.summary["Convergence Time (Epochs)"] = epoch
wandb.run.summary["Total Time Taken"] = time.time() - t0
wandb.run.summary[" Avg Time per Epoch"] = np.mean(per_epoch_time)
if net_params["pe_init"] == "rand_walk":
# Visualize actual and predicted/learned eigenvecs
from utils.plot_util import plot_graph_eigvec
if not os.path.exists(viz_dir):
os.makedirs(viz_dir)
sample_graph_ids = [15, 25, 45]
for f_idx, graph_id in enumerate(sample_graph_ids):
# Test graphs
g_dgl = g_outs_test[graph_id]
f = plt.figure(f_idx, figsize=(12, 6))
plt1 = f.add_subplot(121)
plot_graph_eigvec(
plt1, graph_id, g_dgl, feature_key="eigvec", actual_eigvecs=True
)
plt2 = f.add_subplot(122)
plot_graph_eigvec(
plt2, graph_id, g_dgl, feature_key="p", predicted_eigvecs=True
)
f.savefig(viz_dir + "/test" + str(graph_id) + ".jpg")
# Train graphs
g_dgl = g_outs_train[graph_id]
f = plt.figure(f_idx, figsize=(12, 6))
plt1 = f.add_subplot(121)
plot_graph_eigvec(
plt1, graph_id, g_dgl, feature_key="eigvec", actual_eigvecs=True
)
plt2 = f.add_subplot(122)
plot_graph_eigvec(
plt2, graph_id, g_dgl, feature_key="p", predicted_eigvecs=True
)
wandb.log({"Actual vs Learned Eigenvectors": f})
f.savefig(viz_dir + "/train" + str(graph_id) + ".jpg")
"""
Write the results in out_dir/results folder
"""
with open(write_file_name + ".txt", "w") as f:
f.write(
"""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n{}\n\nTotal Parameters: {}\n\n
FINAL RESULTS\nTEST MAE: {:.4f}\nTRAIN MAE: {:.4f}\n\n
Convergence Time (Epochs): {:.4f}\nTotal Time Taken: {:.4f} hrs\nAverage Time Per Epoch: {:.4f} s\n\n\n""".format(
DATASET_NAME,
MODEL_NAME,
params,
net_params,
model,
net_params["total_param"],
test_mae,
train_mae,
epoch,
(time.time() - t0) / 3600,
np.mean(per_epoch_time),
)
)
def main():
"""
USER CONTROLS
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
help="Please give a config.json file with training/model/data/param details",
)
parser.add_argument("--gpu_id", help="Please give a value for gpu id")
parser.add_argument("--model", help="Please give a value for model name")
parser.add_argument("--dataset", help="Please give a value for dataset name")
parser.add_argument("--out_dir", help="Please give a value for out_dir")
parser.add_argument("--seed", help="Please give a value for seed")
parser.add_argument("--epochs", help="Please give a value for epochs")
parser.add_argument("--batch_size", help="Please give a value for batch_size")
parser.add_argument("--init_lr", help="Please give a value for init_lr")
parser.add_argument(
"--lr_reduce_factor", help="Please give a value for lr_reduce_factor"
)
parser.add_argument(
"--lr_schedule_patience", help="Please give a value for lr_schedule_patience"
)
parser.add_argument("--min_lr", help="Please give a value for min_lr")
parser.add_argument("--weight_decay", help="Please give a value for weight_decay")
parser.add_argument(
"--print_epoch_interval", help="Please give a value for print_epoch_interval"
)
parser.add_argument("--L", help="Please give a value for L")
parser.add_argument("--hidden_dim", help="Please give a value for hidden_dim")
parser.add_argument("--out_dim", help="Please give a value for out_dim")
parser.add_argument("--residual", help="Please give a value for residual")
parser.add_argument("--edge_feat", help="Please give a value for edge_feat")
parser.add_argument("--readout", help="Please give a value for readout")
parser.add_argument(
"--in_feat_dropout", help="Please give a value for in_feat_dropout"
)
parser.add_argument("--dropout", help="Please give a value for dropout")
parser.add_argument("--layer_norm", help="Please give a value for layer_norm")
parser.add_argument("--batch_norm", help="Please give a value for batch_norm")
parser.add_argument("--max_time", help="Please give a value for max_time")
parser.add_argument("--pos_enc_dim", help="Please give a value for pos_enc_dim")
parser.add_argument("--pos_enc", help="Please give a value for pos_enc")
parser.add_argument("--alpha_loss", help="Please give a value for alpha_loss")
parser.add_argument("--lambda_loss", help="Please give a value for lambda_loss")
parser.add_argument("--pe_init", help="Please give a value for pe_init")
args = parser.parse_args()
with open(args.config) as f:
config = json.load(f)
# device
if args.gpu_id is not None:
config["gpu"]["id"] = int(args.gpu_id)
config["gpu"]["use"] = True
device = gpu_setup(config["gpu"]["use"], config["gpu"]["id"])
# model, dataset, out_dir
if args.model is not None:
MODEL_NAME = args.model
else:
MODEL_NAME = config["model"]
if args.dataset is not None:
DATASET_NAME = args.dataset
else:
DATASET_NAME = config["dataset"]
dataset = LoadData(DATASET_NAME)
if args.out_dir is not None:
out_dir = args.out_dir
else:
out_dir = config["out_dir"]
# parameters
params = config["params"]
if args.seed is not None:
params["seed"] = int(args.seed)
if args.epochs is not None:
params["epochs"] = int(args.epochs)
if args.batch_size is not None:
params["batch_size"] = int(args.batch_size)
if args.init_lr is not None:
params["init_lr"] = float(args.init_lr)
if args.lr_reduce_factor is not None:
params["lr_reduce_factor"] = float(args.lr_reduce_factor)
if args.lr_schedule_patience is not None:
params["lr_schedule_patience"] = int(args.lr_schedule_patience)
if args.min_lr is not None:
params["min_lr"] = float(args.min_lr)
if args.weight_decay is not None:
params["weight_decay"] = float(args.weight_decay)
if args.print_epoch_interval is not None:
params["print_epoch_interval"] = int(args.print_epoch_interval)
if args.max_time is not None:
params["max_time"] = float(args.max_time)
# network parameters
net_params = config["net_params"]
net_params["device"] = device
net_params["gpu_id"] = config["gpu"]["id"]
net_params["batch_size"] = params["batch_size"]
if args.L is not None:
net_params["L"] = int(args.L)
if args.hidden_dim is not None:
net_params["hidden_dim"] = int(args.hidden_dim)
if args.out_dim is not None:
net_params["out_dim"] = int(args.out_dim)
if args.residual is not None:
net_params["residual"] = True if args.residual == "True" else False
if args.edge_feat is not None:
net_params["edge_feat"] = True if args.edge_feat == "True" else False
if args.readout is not None:
net_params["readout"] = args.readout
if args.in_feat_dropout is not None:
net_params["in_feat_dropout"] = float(args.in_feat_dropout)
if args.dropout is not None:
net_params["dropout"] = float(args.dropout)
if args.layer_norm is not None:
net_params["layer_norm"] = True if args.layer_norm == "True" else False
if args.batch_norm is not None:
net_params["batch_norm"] = True if args.batch_norm == "True" else False
if args.pos_enc is not None:
net_params["pos_enc"] = True if args.pos_enc == "True" else False
if args.pos_enc_dim is not None:
net_params["pos_enc_dim"] = int(args.pos_enc_dim)
if args.alpha_loss is not None:
net_params["alpha_loss"] = float(args.alpha_loss)
if args.lambda_loss is not None:
net_params["lambda_loss"] = float(args.lambda_loss)
if args.pe_init is not None:
net_params["pe_init"] = args.pe_init
# ZINC
net_params["num_atom_type"] = dataset.num_atom_type
net_params["num_bond_type"] = dataset.num_bond_type
if MODEL_NAME == "PNA":
D = torch.cat(
[
torch.sparse.sum(g.adjacency_matrix(transpose=True), dim=-1).to_dense()
for g in dataset.train.graph_lists
]
)
net_params["avg_d"] = dict(
lin=torch.mean(D),
exp=torch.mean(torch.exp(torch.div(1, D)) - 1),
log=torch.mean(torch.log(D + 1)),
)
root_log_dir = (
out_dir
+ "logs/"
+ MODEL_NAME
+ "_"
+ DATASET_NAME
+ "_GPU"
+ str(config["gpu"]["id"])
+ "_"
+ time.strftime("%Hh%Mm%Ss_on_%b_%d_%Y")
)
root_ckpt_dir = (
out_dir
+ "checkpoints/"
+ MODEL_NAME
+ "_"
+ DATASET_NAME
+ "_GPU"
+ str(config["gpu"]["id"])
+ "_"
+ time.strftime("%Hh%Mm%Ss_on_%b_%d_%Y")
)
write_file_name = (
out_dir
+ "results/result_"
+ MODEL_NAME
+ "_"
+ DATASET_NAME
+ "_GPU"
+ str(config["gpu"]["id"])
+ "_"
+ time.strftime("%Hh%Mm%Ss_on_%b_%d_%Y")
)
write_config_file = (
out_dir
+ "configs/config_"
+ MODEL_NAME
+ "_"
+ DATASET_NAME
+ "_GPU"
+ str(config["gpu"]["id"])
+ "_"
+ time.strftime("%Hh%Mm%Ss_on_%b_%d_%Y")
)
viz_dir = (
out_dir
+ "viz/"
+ MODEL_NAME
+ "_"
+ DATASET_NAME
+ "_GPU"
+ str(config["gpu"]["id"])
+ "_"
+ time.strftime("%Hh%Mm%Ss_on_%b_%d_%Y")
)
dirs = root_log_dir, root_ckpt_dir, write_file_name, write_config_file, viz_dir
if not os.path.exists(out_dir + "results"):
os.makedirs(out_dir + "results")
if not os.path.exists(out_dir + "configs"):
os.makedirs(out_dir + "configs")
net_params["total_param"] = view_model_param(MODEL_NAME, net_params)
wandb.init(project="gnn-lspe", entity="sauravmaheshkar", config=args)
train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs)
wandb.finish()
main()