-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
288 lines (227 loc) · 9.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
'''
Some helper functions to train neural networks.
'''
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from advertorch.attacks import LinfPGDAttack
from advertorch.attacks import L2PGDAttack
from model import *
import os
def acc(model, device, loader):
'''
Return the accuracy of a given model, returning the model in eval mode on the device.
'''
correct = 0
total = 0
model.to(device).eval()
with torch.no_grad():
for img, label in loader:
img, label = img.to(device), label.long().to(device)
output = model(img)
total += label.shape[0]
correct += (torch.argmax(output, dim = 1) == label).sum().item()
return correct / total
def robust_acc(model, device, loader, epsilon = 0.3, nb_iter = 40, step_size = 0.01):
'''
Return the robust accuracy of a given model.
'''
correct = 0
total = 0
model.to(device).eval()
adversary = L2PGDAttack(model, loss_fn = nn.CrossEntropyLoss(reduction = "sum"), eps = epsilon, \
nb_iter = nb_iter, eps_iter = step_size, rand_init = True, clip_min = 0.0, clip_max = 1.0, \
targeted = False)
for cln_data, label in loader:
cln_data, label = cln_data.to(device), label.to(device)
adv_untargeted = adversary.perturb(cln_data, label)
with torch.no_grad():
output = model(adv_untargeted)
total += label.shape[0]
correct += (torch.argmax(output, dim = 1) == label).sum().item()
return correct / total
def train(model, device, trainloader, testloader, loss_fn, optimizer, epochs = 1, verbose = 0, ckpt_folder = None, \
adv = False, epsilon = 0.3, nb_iter = 40, step_size = 0.01, \
regularizer = False, mu = 1, tau = 1, beta = 1):
'''
Train a model, returning the model in train mode on the device.
Value of verbose:
0 -- Only print training loss
1 -- Print training loss and training acc
2 -- Print training loss, training error and test acc
If ckpt_path != None, then assume verbosr = 2
'''
print('Train %s on %s' % (model.__class__.__name__, device))
model.to(device).train()
for i in range(epochs):
total_loss = 0
for img, label in trainloader:
# label is a tensor, one number for each image
img, label = img.to(device), label.to(device)
if adv == True:
model.eval()
adversary = L2PGDAttack(model, loss_fn = nn.CrossEntropyLoss(reduction = "sum"), eps = epsilon, \
nb_iter = nb_iter, eps_iter = step_size, rand_init = True, clip_min = 0.0, clip_max = 1.0, \
targeted = False)
img = adversary.perturb(img, label)
model.train()
model.zero_grad()
output = model(img)
loss = loss_fn(output, label)
if regularizer == True:
n_samples = output.shape[0]
index = torch.arange(n_samples, device = device)
output = output[index, label].reshape((n_samples, 1)) - output
output[index, label] = torch.tensor(1e10, device = device)
alpha, _ = torch.min(output, dim = 1)
# regularizer is H_tau(\alpha) - H_0(\alpha)
# if model.__class__.__name__ != 'CIFARCNN':
# loss += mu * torch.mean(torch.max(torch.tensor(0, dtype = torch.float, device = device), tau - alpha))
# else:
loss += mu * torch.mean(torch.clamp(- alpha, min = 0, max = tau))
if beta > 0:
loss += orthogonal_constraint(model, device = device, beta = beta)
loss.backward()
optimizer.step()
total_loss += loss.item()
total_loss /= len(trainloader)
# Start to evaluate model
model.eval()
if ckpt_folder != None:
verbose = 2
if verbose == 0:
print('Epoch : %d, Loss : %.10f' % (i + 1, total_loss))
elif verbose == 1:
train_acc = acc(model, device, trainloader)
print('Epoch : %d, Loss : %.10f, Training Acc : %f' % (i + 1, total_loss, train_acc))
elif verbose == 2:
train_acc = acc(model, device, trainloader)
test_acc = acc(model, device, testloader)
print('Epoch : %d, Loss : %.10f, Training Acc : %f, Test Acc : %f' % (i + 1, total_loss, train_acc, test_acc))
else:
assert(0)
if ckpt_folder != None:
checkpoint = {'epochs' : i + 1, \
'loss' : total_loss, \
'train_acc' : train_acc, \
'test_acc' : test_acc, \
'model_state_dict' : model.state_dict(), \
'optmizer_state_dict' : optimizer.state_dict(), \
}
torch.save(checkpoint, ckpt_folder + '/' + model.__class__.__name__ + '_' + ('' if regularizer == False and beta < 1e-15 else ('reg_' if regularizer == 1 else 'constraint_')) + str(i + 1).zfill(5) + '.tar')
# Set model back to train mode for the next epoch
model.train()
return model
def makeDataset(dataset, augmentation = False):
'''
Take a string as input and output the dataset.
'''
# if augmentation == True:
# assert(0)
if augmentation == False:
transform_train = transforms.Compose([transforms.ToTensor()])
transform_test = transforms.Compose([transforms.ToTensor()])
else:
transform_train = transforms.Compose([transforms.RandomCrop(32, padding = 2), transforms.RandomHorizontalFlip(), transforms.ToTensor()])
# transform_train = transforms.Compose([transforms.RandomHorizontalFlip(p = 0.5), transforms.ToTensor()])
transform_test = transforms.Compose([transforms.ToTensor()])
if dataset == 'MNIST':
trainingset = torchvision.datasets.MNIST(root = './Data', train = True, download = True, transform = transform_train)
testset = torchvision.datasets.MNIST(root = './Data', train = False, download = True, transform = transform_test)
elif dataset == 'CIFAR':
trainingset = torchvision.datasets.CIFAR10(root = './Data', train = True, download = True, transform = transform_train)
testset = torchvision.datasets.CIFAR10(root = './Data', train = False, download = True, transform = transform_test)
else:
assert(0)
return trainingset, testset
def makeLoader(dataset, batch_size = 64, augmentation = False):
'''
Take a dataset as input and output the data loader.
Dataset can be a string, e.g. 'MNIST' and 'CIFAR', or a tuple of trainingset and testset.
'''
if isinstance(dataset, str):
trainingset, testset = makeDataset(dataset, augmentation)
else:
trainingset, testset = dataset
trainloader = torch.utils.data.DataLoader(trainingset, batch_size = batch_size, shuffle = True, num_workers = 8)
testloader = torch.utils.data.DataLoader(testset, batch_size = batch_size, shuffle = False, num_workers = 8)
return trainloader, testloader
def modelname2model(modelname):
'''
Given a string, return the corresponding model object.
'''
modelname_dict = { \
'MNISTLR': MNISTLR(), \
'MNISTMLP': MNISTMLP(), \
'MNISTCNN': MNISTCNN(), \
'CIFARLR': CIFARLR(), \
'CIFARMLP': CIFARMLP(), \
'CIFARCNN': CIFARCNN(), \
}
model = modelname_dict.get(modelname)
if model == None:
assert(0)
else:
return model
def printArguments(args):
'''
Print every entry of args
'''
print(args)
def dual(p):
'''
Return the number of dual norm of p.
'''
if p == np.inf:
return 1
elif p == 1:
return np.inf
else:
return p / (p - 1)
def __margin__(w, b, x, q):
'''
Calculate the margin for a single data point.
w is d * 1
b is 1 * 1
x is d * 1
'''
return ((np.dot(w.T, x) + b) / np.linalg.norm(w.squeeze(), ord = q)).item()
def distance(W, b, x, q):
'''
Calculate the distance for a multiclass linear classifier.
W is K * d, where K >= 2
b is K * 1
x is d * 1
ret is scalar
'''
K, d = W.shape
assert(x.shape == (d, 1))
assert(b.shape == (K, 1))
c = np.argmax(np.dot(W, x) + b)
ret = np.inf
for i in range(0, K):
if i == c:
continue
temp = np.abs(__margin__((W[i, :] - W[c, :]).reshape((d, 1)), b[i, 0] - b[c, 0], x, q = q))
ret = min(ret, temp)
return ret
def margin(W, b, x, y, q):
'''
Calculate the margin for a multiclass linear classifier.
W is K * d, where K >= 2
b is K * 1
x is d * 1
ret is scalar
'''
K, d = W.shape
assert(x.shape == (d, 1))
assert(b.shape == (K, 1))
ret = np.inf
for i in range(0, K):
if i == y:
continue
temp = __margin__((W[y, :] - W[i, :]).reshape((d, 1)), b[y, :] - b[i, 0], x, q = q)
ret = min(ret, temp)
return ret