-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
125 lines (109 loc) · 3.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
'''
Define architectures of neural network on MNIST and CIFAR.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def orthogonal_constraint(model, device, beta):
ret = 0
for name, p in model.named_parameters():
# fully connected layer
if 'fc' in name and 'weight' in name:
weight = p
# convolutional layer
elif 'conv' in name and 'weight' in name:
weight = p.view(p.shape[0], -1)
ret += beta * (torch.mm(weight, weight.t()) - torch.eye(weight.shape[0], dtype = torch.float, device = device)).pow(2).sum()
return ret
'''
MNIST Models
'''
class MNISTLR(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(784, 10)
def forward(self, x):
x = x.view(-1, 784)
x = self.fc(x)
return x
class MNISTMLP(nn.Module):
def __init__(self):
super().__init__()
self.feature = None
self.fc1 = nn.Linear(784, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = x.view((-1, 784))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class MNISTCNN(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3)
self.conv2 = nn.Conv2d(32, 32, 3)
self.conv3 = nn.Conv2d(32, 64, 3)
self.conv4 = nn.Conv2d(64, 64, 3)
self.fc1 = nn.Linear(4 * 4 * 64, 200)
self.fc2 = nn.Linear(200, 200)
self.fc3 = nn.Linear(200, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, (2, 2))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.max_pool2d(x, (2, 2))
x = x.view(-1, 4 * 4 * 64)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
'''
CIFAR Models
'''
class CIFARLR(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(3 * 32 * 32, 10)
def forward(self, x):
x = x.view((-1, 3 * 32 * 32))
x = self.fc(x)
return x
class CIFARMLP(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(3 * 32 * 32, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = x.view((-1, 3 * 32 * 32))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class CIFARCNN(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, 3)
self.conv2 = nn.Conv2d(64, 64, 3)
self.conv3 = nn.Conv2d(64, 128, 3)
self.conv4 = nn.Conv2d(128, 128, 3)
self.fc1 = nn.Linear(5 * 5 * 128, 256)
self.drop1 = nn.Dropout(p = 0.5)
self.fc2 = nn.Linear(256, 256)
self.drop2 = nn.Dropout(p = 0.5)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, (2, 2))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.max_pool2d(x, (2, 2))
x = x.view(-1, 5 * 5 * 128)
x = F.relu(self.fc1(x))
x = self.drop1(x)
x = F.relu(self.fc2(x))
x = self.drop2(x)
x = self.fc3(x)
return x