-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_char_seg.py
104 lines (85 loc) · 5.67 KB
/
test_char_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import cv2
import numpy as np
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class Char_segment(object):
def __init__(self):
self.input_shape = (2048,64, 3)
self.batch_size=1
self.graph = tf.Graph()
with self.graph.as_default():
self.model=self.network()
init = tf.global_variables_initializer()
self.session = tf.Session(graph=self.graph)
self.session.run(init)
saver = tf.train.Saver(tf.global_variables())
saver.restore(save_path='./save/char_seg.ckpt-4000',sess=self.session)
def network(self):
network = {}
network["inputs"] = tf.placeholder(tf.float32, [self.batch_size, self.input_shape[1],self.input_shape[0], self.input_shape[2]],name='inputs')
network["down-conv1"] = tf.layers.conv2d(inputs=network["inputs"], filters=32, kernel_size=(2, 2), padding="same",activation=tf.nn.relu, name="down-conv1")
network["down-pool1"] = tf.layers.max_pooling2d(inputs=network["down-conv1"], pool_size=[2, 2], strides=2)
network["down-conv2"] = tf.layers.conv2d(inputs=network["down-pool1"], filters=64, kernel_size=(2, 2), padding="same",activation=tf.nn.relu, name="down-conv2")
network["down-pool2"] = tf.layers.max_pooling2d(inputs=network["down-conv2"], pool_size=[2, 2], strides=2)
network["down-conv3"] = tf.layers.conv2d(inputs=network["down-pool2"], filters=128, kernel_size=(2, 2), padding="same",activation=tf.nn.relu, name="down-conv3")
network["down-pool3"] = tf.layers.max_pooling2d(inputs=network["down-conv3"], pool_size=[2, 2], strides=2)
network["down-conv4"] = tf.layers.conv2d(inputs=network["down-pool3"], filters=256, kernel_size=(2, 2), padding="same",activation=tf.nn.relu, name="down-conv4")
network["down-pool4"] = tf.layers.max_pooling2d(inputs=network["down-conv4"], pool_size=[2, 2], strides=2)
network["down-conv5"] = tf.layers.conv2d(inputs=network["down-pool4"], filters=512, kernel_size=(2, 2), padding="same",activation=tf.nn.relu, name="down-conv5")
network["down-pool5"] = tf.layers.max_pooling2d(inputs=network["down-conv5"], pool_size=[2, 2], strides=2)
network["down-conv6"] = tf.layers.conv2d(inputs=network["down-pool5"], filters=512, kernel_size=(2, 2), padding="same",activation=tf.nn.relu, name="down-conv6")
network["down-pool6"] = tf.layers.max_pooling2d(inputs=network["down-conv6"], pool_size=[2, 2], strides=2)
network["up-conv1"] = tf.layers.conv2d_transpose(inputs=network["down-pool6"], filters=512, kernel_size=(1, 2),strides=(1, 2), padding="valid",activation=tf.nn.relu, name="up-conv1")
network["up-conv2"] = tf.layers.conv2d_transpose(inputs=network["up-conv1"], filters=512, kernel_size=(1, 2),strides=(1, 2), padding="valid",activation=tf.nn.relu, name="up-conv2")
network["up-conv3"] = tf.layers.conv2d_transpose(inputs=network["up-conv2"], filters=256, kernel_size=(1, 2),strides=(1, 2), padding="valid",activation=tf.nn.relu, name="up-conv3")
network["up-conv4"] = tf.layers.conv2d_transpose(inputs=network["up-conv3"], filters=128, kernel_size=(1, 2),strides=(1, 2), padding="valid",activation=tf.nn.relu, name="up-conv4")
network["up-conv5"] = tf.layers.conv2d_transpose(inputs=network["up-conv4"], filters=64, kernel_size=(1, 2), strides=(1, 2),padding="valid",activation=tf.nn.relu, name="up-conv5")
network["up-conv6"] = tf.layers.conv2d_transpose(inputs=network["up-conv5"], filters=1, kernel_size=(1, 2), strides=(1, 2),padding="valid",activation=None, name="up-conv6")
network["outputs"] =tf.nn.sigmoid(tf.contrib.layers.flatten(network["up-conv6"]))
return network
def recognize_image(self, img):
#img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
resized_img = cv2.resize(img, ( self.input_shape[0],self.input_shape[1]), interpolation=cv2.INTER_AREA)
image = resized_img.reshape(1, self.input_shape[1], self.input_shape[0], self.input_shape[2])
image = image.astype('float32') / 255.0
with self.graph.as_default():
feed = {self.model["inputs"]: image}
mat_results = self.session.run(self.model["outputs"], feed_dict=feed)
print(np.max(np.max(mat_results)),np.min(np.min(mat_results)))
mat_results[mat_results>=0.5]=1
mat_results[mat_results<0.5]=0
boxes=self.generate_box(mat_results)
return boxes,mat_results[0]*255
def generate_box(self,mat_results):
boxes=[]
box=[0,0,0,self.input_shape[1]]
mat_results=mat_results[0]
for i in range(len(mat_results)-1):
if box[0]!=0 and box[2]!=0:
boxes.append(box)
box = [0, 0, 0, self.input_shape[1]]
if mat_results[i]==0:
continue
elif mat_results[i]==1 and box[0]==0:
box[0]=i
elif mat_results[i]==1 and box[0]!=0 and mat_results[i+1]==0:
box[2]=i+1
else:
continue
return boxes
if __name__=='__main__':
cs=Char_segment()
img = cv2.imread('./DATA/IMAGES/00000.jpg')
img = cv2.resize(img, (2048,48), interpolation=cv2.INTER_AREA)
assert(img is not None)
boxes,mat_results = cs.recognize_image(img)
for i in range(len(mat_results)):
if mat_results[i]>128:
cv2.circle(img, (i,24), 1, (0, 0, 255), -1)
for box in boxes:
print(box)
cv2.rectangle(img,(box[0],box[1]),(box[2],box[3]),(255,0,0),2)
cv2.imwrite("4.png",img)
cv2.imshow("result",img)
cv2.waitKey()