-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchap24.html
2023 lines (1978 loc) · 172 KB
/
chap24.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>第 24 章 分析裂区型设计的方法 | 混乱数据分析:设计的实验</title>
<meta name="description" content="Analysis of Messy Data Volume 1: Designed Experiments的翻译" />
<meta name="generator" content="bookdown 0.37 and GitBook 2.6.7" />
<meta property="og:title" content="第 24 章 分析裂区型设计的方法 | 混乱数据分析:设计的实验" />
<meta property="og:type" content="book" />
<meta property="og:description" content="Analysis of Messy Data Volume 1: Designed Experiments的翻译" />
<meta name="github-repo" content="wangzhen89/AMD" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="第 24 章 分析裂区型设计的方法 | 混乱数据分析:设计的实验" />
<meta name="twitter:description" content="Analysis of Messy Data Volume 1: Designed Experiments的翻译" />
<meta name="author" content="Wang Zhen" />
<meta name="date" content="2024-03-15" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="chap23.html"/>
<link rel="next" href="chap25.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<script src="libs/kePrint-0.0.1/kePrint.js"></script>
<link href="libs/lightable-0.0.1/lightable.css" rel="stylesheet" />
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: {
Macros: {
bm: ["{\\boldsymbol #1}",1],
},
extensions: ["cancel.js"]
}
});
</script>
<!-- add line break after theorem title -->
<script>
document.addEventListener("DOMContentLoaded", (event) => {
for (let s of document.querySelectorAll("span.theorem, span.lemma, span.proposition, span.corollary")) {
s.insertAdjacentHTML('afterend', '<br style="line-height:2px;"/>');
}
});
</script>
<!-- check if --themcolor in style.css matches one of elegantbook theme colors. If so, generates the color palette -->
<script>
document.addEventListener("DOMContentLoaded", (event) => {
const cssroot = document.querySelector(':root');
let theme_color = getComputedStyle(document.documentElement).getPropertyValue('--themecolor').trim();
// blue is the default option
switch (theme_color) {
case 'green':
cssroot.style.setProperty('--structurecolor', 'rgb(0,120,2)');
cssroot.style.setProperty('--main', 'rgb(70,70,70)');
cssroot.style.setProperty('--mainbg', 'rgba(0,166,82,0.05)');
cssroot.style.setProperty('--second', 'rgb(115,45,2)');
cssroot.style.setProperty('--secondbg', 'rgba(115,45,2,0.05)');
cssroot.style.setProperty('--third', 'rgb(0,80,80)');
cssroot.style.setProperty('--thirdbg', 'rgba(0,80,80,0.05)');
break;
case 'cyan':
cssroot.style.setProperty('--structurecolor', 'rgb(31,186,190)');
cssroot.style.setProperty('--main', 'rgb(59,180,5)');
cssroot.style.setProperty('--mainbg', 'rgba(59,180,5,0.05)');
cssroot.style.setProperty('--second', 'rgb(175,153,8)');
cssroot.style.setProperty('--secondbg', 'rgba(175,153,8,0.05)');
cssroot.style.setProperty('--third', 'rgb(244,105,102)');
cssroot.style.setProperty('--thirdbg', 'rgba(244,105,102,0.05)');
break;
case 'gray':
cssroot.style.setProperty('--structurecolor', 'rgb(150,150,150)');
cssroot.style.setProperty('--main', 'rgb(150,150,150)');
cssroot.style.setProperty('--mainbg', 'rgba(150,150,150,0.05)');
cssroot.style.setProperty('--second', 'rgb(150,150,150)');
cssroot.style.setProperty('--secondbg', 'rgba(150,150,150,0.05)');
cssroot.style.setProperty('--third', 'rgb(150,150,150)');
cssroot.style.setProperty('--thirdbg', 'rgba(150,150,150,0.05)');
break;
case 'black':
cssroot.style.setProperty('--structurecolor', 'rgb(0,0,0)');
cssroot.style.setProperty('--main', 'rgb(0,0,0)');
cssroot.style.setProperty('--mainbg', 'rgba(0,0,0,0.05)');
cssroot.style.setProperty('--second', 'rgb(0,0,0)');
cssroot.style.setProperty('--secondbg', 'rgba(0,0,0,0.05)');
cssroot.style.setProperty('--third', 'rgb(0,0,0)');
cssroot.style.setProperty('--thirdbg', 'rgba(0,0,0,0.05)');
break;
default:
cssroot.style.setProperty('--structurecolor', 'rgb(60,113,183)');
cssroot.style.setProperty('--main', 'rgb(0,166,82)');
cssroot.style.setProperty('--mainbg', 'rgba(0,166,82,0.05)');
cssroot.style.setProperty('--second', 'rgb(255,134,24)');
cssroot.style.setProperty('--secondbg', 'rgba(255,134,24,0.05)');
cssroot.style.setProperty('--third', 'rgb(0,174,247)');
cssroot.style.setProperty('--thirdbg', 'rgba(0,174,247,0.05)');
}
});
</script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./">混乱数据分析:设计的实验</a></li>
<li class="divider"></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>介绍</a></li>
<li class="part"><span><b>I 热身</b></span></li>
<li class="chapter" data-level="1" data-path="chap1.html"><a href="chap1.html"><i class="fa fa-check"></i><b>1</b> 最简单的情况:具有同质误差的完全随机设计结构中的单向处理结构</a>
<ul>
<li class="chapter" data-level="1.1" data-path="chap1.html"><a href="chap1.html#sec1-1"><i class="fa fa-check"></i><b>1.1</b> 模型定义和假设</a></li>
<li class="chapter" data-level="1.2" data-path="chap1.html"><a href="chap1.html#sec1-2"><i class="fa fa-check"></i><b>1.2</b> 参数估计</a></li>
<li class="chapter" data-level="1.3" data-path="chap1.html"><a href="chap1.html#sec1-3"><i class="fa fa-check"></i><b>1.3</b> 线性组合的推断:检验与置信区间</a></li>
<li class="chapter" data-level="1.4" data-path="chap1.html"><a href="chap1.html#sec1-4"><i class="fa fa-check"></i><b>1.4</b> 示例:任务和脉搏率</a></li>
<li class="chapter" data-level="1.5" data-path="chap1.html"><a href="chap1.html#sec1-5"><i class="fa fa-check"></i><b>1.5</b> 几个线性组合的同时检验</a></li>
<li class="chapter" data-level="1.6" data-path="chap1.html"><a href="chap1.html#sec1-6"><i class="fa fa-check"></i><b>1.6</b> 示例:任务和脉搏率(续)</a></li>
<li class="chapter" data-level="1.7" data-path="chap1.html"><a href="chap1.html#sec1-7"><i class="fa fa-check"></i><b>1.7</b> 检验所有均值相等</a></li>
<li class="chapter" data-level="1.8" data-path="chap1.html"><a href="chap1.html#sec1-8"><i class="fa fa-check"></i><b>1.8</b> 示例:任务和脉搏率(续)</a></li>
<li class="chapter" data-level="1.9" data-path="chap1.html"><a href="chap1.html#sec1-9"><i class="fa fa-check"></i><b>1.9</b> 比较两种模型的一般方法:条件误差原理</a></li>
<li class="chapter" data-level="1.10" data-path="chap1.html"><a href="chap1.html#sec1-10"><i class="fa fa-check"></i><b>1.10</b> 示例:任务和脉搏率(续)</a></li>
<li class="chapter" data-level="1.11" data-path="chap1.html"><a href="chap1.html#sec1-11"><i class="fa fa-check"></i><b>1.11</b> 计算机分析</a></li>
<li class="chapter" data-level="1.12" data-path="chap1.html"><a href="chap1.html#sec1-12"><i class="fa fa-check"></i><b>1.12</b> 结束语</a></li>
<li class="chapter" data-level="1.13" data-path="chap1.html"><a href="chap1.html#sec1-13"><i class="fa fa-check"></i><b>1.13</b> 练习</a></li>
<li class="chapter" data-level="1.14" data-path="chap1.html"><a href="chap1.html#sec1-14"><i class="fa fa-check"></i><b>1.14</b> R 代码</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="chap2.html"><a href="chap2.html"><i class="fa fa-check"></i><b>2</b> 具有异质误差的完全随机设计结构中的单向处理结构</a>
<ul>
<li class="chapter" data-level="2.1" data-path="chap2.html"><a href="chap2.html#sec2-1"><i class="fa fa-check"></i><b>2.1</b> 模型定义和假设</a></li>
<li class="chapter" data-level="2.2" data-path="chap2.html"><a href="chap2.html#sec2-2"><i class="fa fa-check"></i><b>2.2</b> 参数估计</a></li>
<li class="chapter" data-level="2.3" data-path="chap2.html"><a href="chap2.html#sec2-3"><i class="fa fa-check"></i><b>2.3</b> 方差齐性检验</a>
<ul>
<li class="chapter" data-level="2.3.1" data-path="chap2.html"><a href="chap2.html#sec2-3-1"><i class="fa fa-check"></i><b>2.3.1</b> Hartley’s <em>F</em>-Max Test</a></li>
<li class="chapter" data-level="2.3.2" data-path="chap2.html"><a href="chap2.html#sec2-3-2"><i class="fa fa-check"></i><b>2.3.2</b> Bartlett’s Test</a></li>
<li class="chapter" data-level="2.3.3" data-path="chap2.html"><a href="chap2.html#sec2-3-3"><i class="fa fa-check"></i><b>2.3.3</b> Levene’s Test</a></li>
<li class="chapter" data-level="2.3.4" data-path="chap2.html"><a href="chap2.html#sec2-4-4"><i class="fa fa-check"></i><b>2.3.4</b> Brown and Forsythe’s Test</a></li>
<li class="chapter" data-level="2.3.5" data-path="chap2.html"><a href="chap2.html#sec2-3-5"><i class="fa fa-check"></i><b>2.3.5</b> O’Brien’s Test</a></li>
<li class="chapter" data-level="2.3.6" data-path="chap2.html"><a href="chap2.html#sec2-3-6"><i class="fa fa-check"></i><b>2.3.6</b> 一些建议</a></li>
</ul></li>
<li class="chapter" data-level="2.4" data-path="chap2.html"><a href="chap2.html#sec2-4"><i class="fa fa-check"></i><b>2.4</b> 示例:药物和错误</a></li>
<li class="chapter" data-level="2.5" data-path="chap2.html"><a href="chap2.html#sec2-5"><i class="fa fa-check"></i><b>2.5</b> 关于线性组合的推断</a></li>
<li class="chapter" data-level="2.6" data-path="chap2.html"><a href="chap2.html#sec2-6"><i class="fa fa-check"></i><b>2.6</b> 示例:药物和错误(续)</a></li>
<li class="chapter" data-level="2.7" data-path="chap2.html"><a href="chap2.html#sec2-7"><i class="fa fa-check"></i><b>2.7</b> 自由度的一般 Satterthwaite 近似</a></li>
<li class="chapter" data-level="2.8" data-path="chap2.html"><a href="chap2.html#sec2-8"><i class="fa fa-check"></i><b>2.8</b> 比较所有均值</a></li>
<li class="chapter" data-level="2.9" data-path="chap2.html"><a href="chap2.html#sec2-9"><i class="fa fa-check"></i><b>2.9</b> 结束语</a></li>
<li class="chapter" data-level="2.10" data-path="chap2.html"><a href="chap2.html#sec2-10"><i class="fa fa-check"></i><b>2.10</b> 练习</a></li>
<li class="chapter" data-level="2.11" data-path="chap2.html"><a href="chap2.html#sec2-11"><i class="fa fa-check"></i><b>2.11</b> R 代码</a></li>
</ul></li>
<li class="part"><span><b>II 磨刀</b></span></li>
<li class="chapter" data-level="3" data-path="chap3.html"><a href="chap3.html"><i class="fa fa-check"></i><b>3</b> 同时推断程序和多重比较</a>
<ul>
<li class="chapter" data-level="3.1" data-path="chap3.html"><a href="chap3.html#sec3-1"><i class="fa fa-check"></i><b>3.1</b> 错误率</a></li>
<li class="chapter" data-level="3.2" data-path="chap3.html"><a href="chap3.html#sec3-2"><i class="fa fa-check"></i><b>3.2</b> 建议</a></li>
<li class="chapter" data-level="3.3" data-path="chap3.html"><a href="chap3.html#sec3-3"><i class="fa fa-check"></i><b>3.3</b> 最小显著差异</a></li>
<li class="chapter" data-level="3.4" data-path="chap3.html"><a href="chap3.html#sec3-4"><i class="fa fa-check"></i><b>3.4</b> Fisher’s LSD Procedure</a></li>
<li class="chapter" data-level="3.5" data-path="chap3.html"><a href="chap3.html#sec3-5"><i class="fa fa-check"></i><b>3.5</b> Bonferroni’s Method</a></li>
<li class="chapter" data-level="3.6" data-path="chap3.html"><a href="chap3.html#sec3-6"><i class="fa fa-check"></i><b>3.6</b> Scheffé’s Procedure</a></li>
<li class="chapter" data-level="3.7" data-path="chap3.html"><a href="chap3.html#sec3-7"><i class="fa fa-check"></i><b>3.7</b> Tukey–Kramer Method</a></li>
<li class="chapter" data-level="3.8" data-path="chap3.html"><a href="chap3.html#sec3-8"><i class="fa fa-check"></i><b>3.8</b> 模拟方法</a></li>
<li class="chapter" data-level="3.9" data-path="chap3.html"><a href="chap3.html#sec3-9"><i class="fa fa-check"></i><b>3.9</b> Šidák Procedure</a></li>
<li class="chapter" data-level="3.10" data-path="chap3.html"><a href="chap3.html#sec3-10"><i class="fa fa-check"></i><b>3.10</b> 示例:成对比较</a></li>
<li class="chapter" data-level="3.11" data-path="chap3.html"><a href="chap3.html#sec3-11"><i class="fa fa-check"></i><b>3.11</b> Dunnett’s Procedure</a></li>
<li class="chapter" data-level="3.12" data-path="chap3.html"><a href="chap3.html#sec3-12"><i class="fa fa-check"></i><b>3.12</b> 示例:与对照比较</a></li>
<li class="chapter" data-level="3.13" data-path="chap3.html"><a href="chap3.html#sec3-13"><i class="fa fa-check"></i><b>3.13</b> 多元 <span class="math inline">\(t\)</span></a></li>
<li class="chapter" data-level="3.14" data-path="chap3.html"><a href="chap3.html#sec3-14"><i class="fa fa-check"></i><b>3.14</b> 示例:线性独立比较</a></li>
<li class="chapter" data-level="3.15" data-path="chap3.html"><a href="chap3.html#sec3-15"><i class="fa fa-check"></i><b>3.15</b> 序贯拒绝方法</a>
<ul>
<li class="chapter" data-level="3.15.1" data-path="chap3.html"><a href="chap3.html#sec3-15-1"><i class="fa fa-check"></i><b>3.15.1</b> Bonferroni–Holm Method</a></li>
<li class="chapter" data-level="3.15.2" data-path="chap3.html"><a href="chap3.html#sec3-15-2"><i class="fa fa-check"></i><b>3.15.2</b> Šidák–Holm Method</a></li>
<li class="chapter" data-level="3.15.3" data-path="chap3.html"><a href="chap3.html#sec3-15-3"><i class="fa fa-check"></i><b>3.15.3</b> 控制 FDR 的 Benjamini 和 Hochberg Method</a></li>
</ul></li>
<li class="chapter" data-level="3.16" data-path="chap3.html"><a href="chap3.html#sec3-16"><i class="fa fa-check"></i><b>3.16</b> 示例:线性相关比较</a></li>
<li class="chapter" data-level="3.17" data-path="chap3.html"><a href="chap3.html#sec3-17"><i class="fa fa-check"></i><b>3.17</b> 多重极差检验</a>
<ul>
<li class="chapter" data-level="3.17.1" data-path="chap3.html"><a href="chap3.html#sec3-17-1"><i class="fa fa-check"></i><b>3.17.1</b> Student–Newman–Keul’s Method</a></li>
<li class="chapter" data-level="3.17.2" data-path="chap3.html"><a href="chap3.html#sec3-17-2"><i class="fa fa-check"></i><b>3.17.2</b> Duncan’s New Multiple Range Method</a></li>
</ul></li>
<li class="chapter" data-level="3.18" data-path="chap3.html"><a href="chap3.html#sec3-18"><i class="fa fa-check"></i><b>3.18</b> Waller–Duncan Procedure</a></li>
<li class="chapter" data-level="3.19" data-path="chap3.html"><a href="chap3.html#sec3-19"><i class="fa fa-check"></i><b>3.19</b> 示例:成对比较的多重极差</a></li>
<li class="chapter" data-level="3.20" data-path="chap3.html"><a href="chap3.html#sec3-20"><i class="fa fa-check"></i><b>3.20</b> 警示</a></li>
<li class="chapter" data-level="3.21" data-path="chap3.html"><a href="chap3.html#sec3-21"><i class="fa fa-check"></i><b>3.21</b> 结束语</a></li>
<li class="chapter" data-level="3.22" data-path="chap3.html"><a href="chap3.html#sec3-22"><i class="fa fa-check"></i><b>3.22</b> 练习</a></li>
<li class="chapter" data-level="3.23" data-path="chap3.html"><a href="chap3.html#sec3-23"><i class="fa fa-check"></i><b>3.23</b> R 代码</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="chap4.html"><a href="chap4.html"><i class="fa fa-check"></i><b>4</b> 实验设计基础</a>
<ul>
<li class="chapter" data-level="4.1" data-path="chap4.html"><a href="chap4.html#sec4-1"><i class="fa fa-check"></i><b>4.1</b> 介绍基本概念</a></li>
<li class="chapter" data-level="4.2" data-path="chap4.html"><a href="chap4.html#sec4-2"><i class="fa fa-check"></i><b>4.2</b> 设计实验的结构</a>
<ul>
<li class="chapter" data-level="4.2.1" data-path="chap4.html"><a href="chap4.html#sec4-2-1"><i class="fa fa-check"></i><b>4.2.1</b> 设计结构类型</a></li>
<li class="chapter" data-level="4.2.2" data-path="chap4.html"><a href="chap4.html#sec4-2-2"><i class="fa fa-check"></i><b>4.2.2</b> 处理结构类型</a></li>
</ul></li>
<li class="chapter" data-level="4.3" data-path="chap4.html"><a href="chap4.html#sec4-3"><i class="fa fa-check"></i><b>4.3</b> 不同设计实验的示例</a>
<ul>
<li class="chapter" data-level="4.3.1" data-path="chap4.html"><a href="chap4.html#sec4-3-1"><i class="fa fa-check"></i><b>4.3.1</b> 示例 4.1: 饮食</a></li>
<li class="chapter" data-level="4.3.2" data-path="chap4.html"><a href="chap4.html#sec4-3-2"><i class="fa fa-check"></i><b>4.3.2</b> 示例 4.2: 房屋油漆</a></li>
<li class="chapter" data-level="4.3.3" data-path="chap4.html"><a href="chap4.html#sec4-3-3"><i class="fa fa-check"></i><b>4.3.3</b> 示例 4.3: 钢板</a></li>
<li class="chapter" data-level="4.3.4" data-path="chap4.html"><a href="chap4.html#sec4-3-4"><i class="fa fa-check"></i><b>4.3.4</b> 示例 4.4: 氮和钾的水平</a></li>
<li class="chapter" data-level="4.3.5" data-path="chap4.html"><a href="chap4.html#sec4-3-5"><i class="fa fa-check"></i><b>4.3.5</b> 示例 4.5: 区组和重复</a></li>
<li class="chapter" data-level="4.3.6" data-path="chap4.html"><a href="chap4.html#sec4-3-6"><i class="fa fa-check"></i><b>4.3.6</b> 示例 4.6:行区组和列区组</a></li>
</ul></li>
<li class="chapter" data-level="4.4" data-path="chap4.html"><a href="chap4.html#sec4-4"><i class="fa fa-check"></i><b>4.4</b> 结束语</a></li>
<li class="chapter" data-level="4.5" data-path="chap4.html"><a href="chap4.html#sec4-5"><i class="fa fa-check"></i><b>4.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="5" data-path="chap5.html"><a href="chap5.html"><i class="fa fa-check"></i><b>5</b> 多水平设计:裂区、条区、重复测量及其组合</a>
<ul>
<li class="chapter" data-level="5.1" data-path="chap5.html"><a href="chap5.html#sec5-1"><i class="fa fa-check"></i><b>5.1</b> 识别实验单元的尺寸——四种基本设计结构</a></li>
<li class="chapter" data-level="5.2" data-path="chap5.html"><a href="chap5.html#sec5-2"><i class="fa fa-check"></i><b>5.2</b> 分层设计:一种多水平的设计结构</a></li>
<li class="chapter" data-level="5.3" data-path="chap5.html"><a href="chap5.html#sec5-3"><i class="fa fa-check"></i><b>5.3</b> 裂区设计结构:两水平设计结构</a>
<ul>
<li class="chapter" data-level="5.3.1" data-path="chap5.html"><a href="chap5.html#sec5-3-1"><i class="fa fa-check"></i><b>5.3.1</b> 示例 5.1:烹饪大豆——最简单的裂区或两水平设计结构</a></li>
<li class="chapter" data-level="5.3.2" data-path="chap5.html"><a href="chap5.html#sec5-3-2"><i class="fa fa-check"></i><b>5.3.2</b> 示例 5.2:磨小麦——通常的裂区或两水平设计结构</a></li>
<li class="chapter" data-level="5.3.3" data-path="chap5.html"><a href="chap5.html#sec5-3-3"><i class="fa fa-check"></i><b>5.3.3</b> 示例 5.3:烘焙面包——具有不完全块设计结构的裂区</a></li>
<li class="chapter" data-level="5.3.4" data-path="chap5.html"><a href="chap5.html#sec5-3-4"><i class="fa fa-check"></i><b>5.3.4</b> 示例 5.4:展示柜中的肉——复杂裂区或四水平设计</a></li>
</ul></li>
<li class="chapter" data-level="5.4" data-path="chap5.html"><a href="chap5.html#sec5-4"><i class="fa fa-check"></i><b>5.4</b> 条区设计结构:一种无层次的多水平设计</a>
<ul>
<li class="chapter" data-level="5.4.1" data-path="chap5.html"><a href="chap5.html#sec5-4-1"><i class="fa fa-check"></i><b>5.4.1</b> 示例 5.5:制作奶酪</a></li>
</ul></li>
<li class="chapter" data-level="5.5" data-path="chap5.html"><a href="chap5.html#sec5-5"><i class="fa fa-check"></i><b>5.5</b> 重复测量设计</a>
<ul>
<li class="chapter" data-level="5.5.1" data-path="chap5.html"><a href="chap5.html#sec5-5-1"><i class="fa fa-check"></i><b>5.5.1</b> 示例 5.6:马足——基本重复测量设计</a></li>
<li class="chapter" data-level="5.5.2" data-path="chap5.html"><a href="chap5.html#sec5-5-2"><i class="fa fa-check"></i><b>5.5.2</b> 示例 5.7:舒适度研究——重复测量设计</a></li>
<li class="chapter" data-level="5.5.3" data-path="chap5.html"><a href="chap5.html#示例-5.8交叉或转换设计"><i class="fa fa-check"></i><b>5.5.3</b> 示例 5.8:交叉或转换设计</a></li>
</ul></li>
<li class="chapter" data-level="5.6" data-path="chap5.html"><a href="chap5.html#sec5-6"><i class="fa fa-check"></i><b>5.6</b> 涉及嵌套因素的设计</a>
<ul>
<li class="chapter" data-level="5.6.1" data-path="chap5.html"><a href="chap5.html#sec5-6-1"><i class="fa fa-check"></i><b>5.6.1</b> 示例 5.9:动物遗传学</a></li>
<li class="chapter" data-level="5.6.2" data-path="chap5.html"><a href="chap5.html#sec5-6-2"><i class="fa fa-check"></i><b>5.6.2</b> 示例 5.10:大豆的生育期组</a></li>
<li class="chapter" data-level="5.6.3" data-path="chap5.html"><a href="chap5.html#sec5-6-3"><i class="fa fa-check"></i><b>5.6.3</b> 示例 5.11:飞机引擎</a></li>
<li class="chapter" data-level="5.6.4" data-path="chap5.html"><a href="chap5.html#sec5-6-4"><i class="fa fa-check"></i><b>5.6.4</b> 示例 5.12:简单的舒适度实验</a></li>
<li class="chapter" data-level="5.6.5" data-path="chap5.html"><a href="chap5.html#sec5-6-5"><i class="fa fa-check"></i><b>5.6.5</b> 示例 5.13:重复测量的多地点研究</a></li>
</ul></li>
<li class="chapter" data-level="5.7" data-path="chap5.html"><a href="chap5.html#sec5-7"><i class="fa fa-check"></i><b>5.7</b> 结束语</a></li>
<li class="chapter" data-level="5.8" data-path="chap5.html"><a href="chap5.html#sec5-8"><i class="fa fa-check"></i><b>5.8</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="6" data-path="chap6.html"><a href="chap6.html"><i class="fa fa-check"></i><b>6</b> 模型的矩阵形式</a>
<ul>
<li class="chapter" data-level="6.1" data-path="chap6.html"><a href="chap6.html#sec6-1"><i class="fa fa-check"></i><b>6.1</b> 基本符号</a>
<ul>
<li class="chapter" data-level="6.1.1" data-path="chap6.html"><a href="chap6.html#sec6-1-1"><i class="fa fa-check"></i><b>6.1.1</b> 简单线性回归模型</a></li>
<li class="chapter" data-level="6.1.2" data-path="chap6.html"><a href="chap6.html#sec6-1-2"><i class="fa fa-check"></i><b>6.1.2</b> 单向处理结构模型</a></li>
<li class="chapter" data-level="6.1.3" data-path="chap6.html"><a href="chap6.html#sec6-1-3"><i class="fa fa-check"></i><b>6.1.3</b> 双向处理结构模型</a></li>
<li class="chapter" data-level="6.1.4" data-path="chap6.html"><a href="chap6.html#sec6-1-4"><i class="fa fa-check"></i><b>6.1.4</b> 示例 6.1:双向处理结构的均值模型</a></li>
</ul></li>
<li class="chapter" data-level="6.2" data-path="chap6.html"><a href="chap6.html#sec6-2"><i class="fa fa-check"></i><b>6.2</b> 最小二乘估计</a>
<ul>
<li class="chapter" data-level="6.2.1" data-path="chap6.html"><a href="chap6.html#sec6-2-1"><i class="fa fa-check"></i><b>6.2.1</b> 最小二乘方程组</a></li>
<li class="chapter" data-level="6.2.2" data-path="chap6.html"><a href="chap6.html#sec6-2-2"><i class="fa fa-check"></i><b>6.2.2</b> 零和限制</a></li>
<li class="chapter" data-level="6.2.3" data-path="chap6.html"><a href="chap6.html#sec6-2-3"><i class="fa fa-check"></i><b>6.2.3</b> 置零限制</a></li>
<li class="chapter" data-level="6.2.4" data-path="chap6.html"><a href="chap6.html#sec6-2-4"><i class="fa fa-check"></i><b>6.2.4</b> 示例 6.2:单向处理结构</a></li>
</ul></li>
<li class="chapter" data-level="6.3" data-path="chap6.html"><a href="chap6.html#sec6-3"><i class="fa fa-check"></i><b>6.3</b> 可估性和连通的设计</a>
<ul>
<li class="chapter" data-level="6.3.1" data-path="chap6.html"><a href="chap6.html#sec6-3-1"><i class="fa fa-check"></i><b>6.3.1</b> 可估函数</a></li>
<li class="chapter" data-level="6.3.2" data-path="chap6.html"><a href="chap6.html#sec6-3-2"><i class="fa fa-check"></i><b>6.3.2</b> 连通性</a></li>
</ul></li>
<li class="chapter" data-level="6.4" data-path="chap6.html"><a href="chap6.html#sec6-4"><i class="fa fa-check"></i><b>6.4</b> 关于线性模型参数的检验假设</a></li>
<li class="chapter" data-level="6.5" data-path="chap6.html"><a href="chap6.html#sec6-5"><i class="fa fa-check"></i><b>6.5</b> 总体边际均值</a></li>
<li class="chapter" data-level="6.6" data-path="chap6.html"><a href="chap6.html#sec6-6"><i class="fa fa-check"></i><b>6.6</b> 结束语</a></li>
<li class="chapter" data-level="6.7" data-path="chap6.html"><a href="chap6.html#sec6-7"><i class="fa fa-check"></i><b>6.7</b> 练习</a></li>
<li class="chapter" data-level="6.8" data-path="chap6.html"><a href="chap6.html#sec6-8"><i class="fa fa-check"></i><b>6.8</b> R 代码</a></li>
</ul></li>
<li class="part"><span><b>III 砍柴</b></span></li>
<li class="chapter" data-level="7" data-path="chap7.html"><a href="chap7.html"><i class="fa fa-check"></i><b>7</b> 均衡双向处理结构</a>
<ul>
<li class="chapter" data-level="7.1" data-path="chap7.html"><a href="chap7.html#sec7-1"><i class="fa fa-check"></i><b>7.1</b> 模型定义和假设</a>
<ul>
<li class="chapter" data-level="7.1.1" data-path="chap7.html"><a href="chap7.html#sec7-1-1"><i class="fa fa-check"></i><b>7.1.1</b> 均值模型</a></li>
<li class="chapter" data-level="7.1.2" data-path="chap7.html"><a href="chap7.html#sec7-1-2"><i class="fa fa-check"></i><b>7.1.2</b> 效应模型</a></li>
</ul></li>
<li class="chapter" data-level="7.2" data-path="chap7.html"><a href="chap7.html#sec7-2"><i class="fa fa-check"></i><b>7.2</b> 参数估计</a></li>
<li class="chapter" data-level="7.3" data-path="chap7.html"><a href="chap7.html#sec7-3"><i class="fa fa-check"></i><b>7.3</b> 交互作用及它们的重要性</a></li>
<li class="chapter" data-level="7.4" data-path="chap7.html"><a href="chap7.html#sec7-4"><i class="fa fa-check"></i><b>7.4</b> 主效应</a></li>
<li class="chapter" data-level="7.5" data-path="chap7.html"><a href="chap7.html#sec7-5"><i class="fa fa-check"></i><b>7.5</b> 计算机分析</a></li>
<li class="chapter" data-level="7.6" data-path="chap7.html"><a href="chap7.html#sec7-6"><i class="fa fa-check"></i><b>7.6</b> 结束语</a></li>
<li class="chapter" data-level="7.7" data-path="chap7.html"><a href="chap7.html#sec7-7"><i class="fa fa-check"></i><b>7.7</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="chap8.html"><a href="chap8.html"><i class="fa fa-check"></i><b>8</b> 案例研究:均衡双向实验的完整分析</a>
<ul>
<li class="chapter" data-level="8.1" data-path="chap8.html"><a href="chap8.html#sec8-1"><i class="fa fa-check"></i><b>8.1</b> 主效应均值对比</a></li>
<li class="chapter" data-level="8.2" data-path="chap8.html"><a href="chap8.html#sec8-2"><i class="fa fa-check"></i><b>8.2</b> 交互对比</a></li>
<li class="chapter" data-level="8.3" data-path="chap8.html"><a href="chap8.html#sec8-3"><i class="fa fa-check"></i><b>8.3</b> 油漆铺路示例</a></li>
<li class="chapter" data-level="8.4" data-path="chap8.html"><a href="chap8.html#sec8-4"><i class="fa fa-check"></i><b>8.4</b> 分析定量处理因素</a></li>
<li class="chapter" data-level="8.5" data-path="chap8.html"><a href="chap8.html#sec8-5"><i class="fa fa-check"></i><b>8.5</b> 多重检验</a></li>
<li class="chapter" data-level="8.6" data-path="chap8.html"><a href="chap8.html#sec8-6"><i class="fa fa-check"></i><b>8.6</b> 结束语</a></li>
<li class="chapter" data-level="8.7" data-path="chap8.html"><a href="chap8.html#sec8-7"><i class="fa fa-check"></i><b>8.7</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="9" data-path="chap9.html"><a href="chap9.html"><i class="fa fa-check"></i><b>9</b> 使用均值模型分析子类数不等的均衡双向处理结构</a>
<ul>
<li class="chapter" data-level="9.1" data-path="chap9.html"><a href="chap9.html#sec9-1"><i class="fa fa-check"></i><b>9.1</b> 模型定义和假设</a></li>
<li class="chapter" data-level="9.2" data-path="chap9.html"><a href="chap9.html#sec9-2"><i class="fa fa-check"></i><b>9.2</b> 参数估计</a></li>
<li class="chapter" data-level="9.3" data-path="chap9.html"><a href="chap9.html#sec9-3"><i class="fa fa-check"></i><b>9.3</b> 检验所有均值是否相等</a></li>
<li class="chapter" data-level="9.4" data-path="chap9.html"><a href="chap9.html#sec9-4"><i class="fa fa-check"></i><b>9.4</b> 交互作用和主效应假设</a></li>
<li class="chapter" data-level="9.5" data-path="chap9.html"><a href="chap9.html#sec9-5"><i class="fa fa-check"></i><b>9.5</b> 总体边际均值</a></li>
<li class="chapter" data-level="9.6" data-path="chap9.html"><a href="chap9.html#sec9-6"><i class="fa fa-check"></i><b>9.6</b> 同时推断与多重比较</a></li>
<li class="chapter" data-level="9.7" data-path="chap9.html"><a href="chap9.html#sec9-7"><i class="fa fa-check"></i><b>9.7</b> 结束语</a></li>
<li class="chapter" data-level="9.8" data-path="chap9.html"><a href="chap9.html#sec9-8"><i class="fa fa-check"></i><b>9.8</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="10" data-path="chap10.html"><a href="chap10.html"><i class="fa fa-check"></i><b>10</b> 使用效应模型分析子类数不等的均衡双向处理结构</a>
<ul>
<li class="chapter" data-level="10.1" data-path="chap10.html"><a href="chap10.html#sec10-1"><i class="fa fa-check"></i><b>10.1</b> 模型定义</a></li>
<li class="chapter" data-level="10.2" data-path="chap10.html"><a href="chap10.html#sec10-2"><i class="fa fa-check"></i><b>10.2</b> 参数估计和 I 型分析</a></li>
<li class="chapter" data-level="10.3" data-path="chap10.html"><a href="chap10.html#sec10-3"><i class="fa fa-check"></i><b>10.3</b> 在 SAS 中使用可估函数</a></li>
<li class="chapter" data-level="10.4" data-path="chap10.html"><a href="chap10.html#sec10-4"><i class="fa fa-check"></i><b>10.4</b> I–IV 型假设</a></li>
<li class="chapter" data-level="10.5" data-path="chap10.html"><a href="chap10.html#sec10-5"><i class="fa fa-check"></i><b>10.5</b> 在 SAS-GLM 中使用 I–IV 型可估函数</a></li>
<li class="chapter" data-level="10.6" data-path="chap10.html"><a href="chap10.html#sec10-6"><i class="fa fa-check"></i><b>10.6</b> 总体边际均值与最小二乘均值</a></li>
<li class="chapter" data-level="10.7" data-path="chap10.html"><a href="chap10.html#sec10-7"><i class="fa fa-check"></i><b>10.7</b> 计算机分析</a></li>
<li class="chapter" data-level="10.8" data-path="chap10.html"><a href="chap10.html#sec10-8"><i class="fa fa-check"></i><b>10.8</b> 结束语</a></li>
</ul></li>
<li class="chapter" data-level="11" data-path="chap11.html"><a href="chap11.html"><i class="fa fa-check"></i><b>11</b> 分析子类数不等的大型均衡双向实验</a>
<ul>
<li class="chapter" data-level="11.1" data-path="chap11.html"><a href="chap11.html#sec11-1"><i class="fa fa-check"></i><b>11.1</b> 可行性问题</a></li>
<li class="chapter" data-level="11.2" data-path="chap11.html"><a href="chap11.html#sec11-2"><i class="fa fa-check"></i><b>11.2</b> 未加权均值法</a></li>
<li class="chapter" data-level="11.3" data-path="chap11.html"><a href="chap11.html#sec11-3"><i class="fa fa-check"></i><b>11.3</b> 同时推断与多重比较</a></li>
<li class="chapter" data-level="11.4" data-path="chap11.html"><a href="chap11.html#sec11-4"><i class="fa fa-check"></i><b>11.4</b> 未加权均值的示例</a></li>
<li class="chapter" data-level="11.5" data-path="chap11.html"><a href="chap11.html#sec11-5"><i class="fa fa-check"></i><b>11.5</b> 计算机分析</a></li>
<li class="chapter" data-level="11.6" data-path="chap11.html"><a href="chap11.html#sec11-6"><i class="fa fa-check"></i><b>11.6</b> 结束语</a></li>
</ul></li>
<li class="chapter" data-level="12" data-path="chap12.html"><a href="chap12.html"><i class="fa fa-check"></i><b>12</b> 案例研究:子类数不等的均衡双向处理结构</a>
<ul>
<li class="chapter" data-level="12.1" data-path="chap12.html"><a href="chap12.html#sec12-1"><i class="fa fa-check"></i><b>12.1</b> 脂肪-表面活性剂示例</a></li>
<li class="chapter" data-level="12.2" data-path="chap12.html"><a href="chap12.html#sec12-2"><i class="fa fa-check"></i><b>12.2</b> 结束语</a></li>
</ul></li>
<li class="chapter" data-level="13" data-path="chap13.html"><a href="chap13.html"><i class="fa fa-check"></i><b>13</b> 使用均值模型分析缺失处理组合的双向处理结构</a>
<ul>
<li class="chapter" data-level="13.1" data-path="chap13.html"><a href="chap13.html#sec13-1"><i class="fa fa-check"></i><b>13.1</b> 参数估计</a></li>
<li class="chapter" data-level="13.2" data-path="chap13.html"><a href="chap13.html#sec13-2"><i class="fa fa-check"></i><b>13.2</b> 假设检验和置信区间</a>
<ul>
<li class="chapter" data-level="13.2.1" data-path="chap13.html"><a href="chap13.html#sec13-2-1"><i class="fa fa-check"></i><b>13.2.1</b> 示例 13.1</a></li>
</ul></li>
<li class="chapter" data-level="13.3" data-path="chap13.html"><a href="chap13.html#sec13-3"><i class="fa fa-check"></i><b>13.3</b> 计算机分析</a></li>
<li class="chapter" data-level="13.4" data-path="chap13.html"><a href="chap13.html#sec13-4"><i class="fa fa-check"></i><b>13.4</b> 结束语</a></li>
<li class="chapter" data-level="13.5" data-path="chap13.html"><a href="chap13.html#sec13-5"><i class="fa fa-check"></i><b>13.5</b> 练习</a></li>
<li class="chapter" data-level="13.6" data-path="chap13.html"><a href="chap13.html#sec13-6"><i class="fa fa-check"></i><b>13.6</b> R 代码</a></li>
</ul></li>
<li class="chapter" data-level="14" data-path="chap14.html"><a href="chap14.html"><i class="fa fa-check"></i><b>14</b> 使用效应模型分析缺失处理组合的双向处理结构</a>
<ul>
<li class="chapter" data-level="14.1" data-path="chap14.html"><a href="chap14.html#i-型和-ii-型假设"><i class="fa fa-check"></i><b>14.1</b> I 型和 II 型假设</a></li>
<li class="chapter" data-level="14.2" data-path="chap14.html"><a href="chap14.html#iii-型假设"><i class="fa fa-check"></i><b>14.2</b> III 型假设</a></li>
<li class="chapter" data-level="14.3" data-path="chap14.html"><a href="chap14.html#sec14-3"><i class="fa fa-check"></i><b>14.3</b> IV 型假设</a></li>
<li class="chapter" data-level="14.4" data-path="chap14.html"><a href="chap14.html#sec14-4"><i class="fa fa-check"></i><b>14.4</b> 总体边际均值和最小二乘均值</a></li>
<li class="chapter" data-level="14.5" data-path="chap14.html"><a href="chap14.html#sec14-5"><i class="fa fa-check"></i><b>14.5</b> 计算机分析</a></li>
<li class="chapter" data-level="14.6" data-path="chap14.html"><a href="chap14.html#sec14-6"><i class="fa fa-check"></i><b>14.6</b> 结束语</a></li>
<li class="chapter" data-level="14.7" data-path="chap14.html"><a href="chap14.html#sec14-7"><i class="fa fa-check"></i><b>14.7</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="15" data-path="chap15.html"><a href="chap15.html"><i class="fa fa-check"></i><b>15</b> 案例研究:缺失处理组合的双向处理结构</a>
<ul>
<li class="chapter" data-level="15.1" data-path="chap15.html"><a href="chap15.html#sec15-1"><i class="fa fa-check"></i><b>15.1</b> 案例研究</a></li>
<li class="chapter" data-level="15.2" data-path="chap15.html"><a href="chap15.html#sec15-2"><i class="fa fa-check"></i><b>15.2</b> 结束语</a></li>
</ul></li>
<li class="chapter" data-level="16" data-path="chap16.html"><a href="chap16.html"><i class="fa fa-check"></i><b>16</b> 分析三向和高阶处理结构</a>
<ul>
<li class="chapter" data-level="16.1" data-path="chap16.html"><a href="chap16.html#sec16-1"><i class="fa fa-check"></i><b>16.1</b> 一般策略</a></li>
<li class="chapter" data-level="16.2" data-path="chap16.html"><a href="chap16.html#sec16-2"><i class="fa fa-check"></i><b>16.2</b> 均衡和不均衡实验</a></li>
<li class="chapter" data-level="16.3" data-path="chap16.html"><a href="chap16.html#sec16-3"><i class="fa fa-check"></i><b>16.3</b> I 型和 II 型分析</a></li>
<li class="chapter" data-level="16.4" data-path="chap16.html"><a href="chap16.html#sec16-4"><i class="fa fa-check"></i><b>16.4</b> 结束语</a></li>
<li class="chapter" data-level="16.5" data-path="chap16.html"><a href="chap16.html#sec16-5"><i class="fa fa-check"></i><b>16.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="17" data-path="chap17.html"><a href="chap17.html"><i class="fa fa-check"></i><b>17</b> 案例研究:具有许多缺失处理组合的三向处理结构</a>
<ul>
<li class="chapter" data-level="17.1" data-path="chap17.html"><a href="chap17.html#sec17-1"><i class="fa fa-check"></i><b>17.1</b> 营养评分示例</a></li>
<li class="chapter" data-level="17.2" data-path="chap17.html"><a href="chap17.html#sec17-2"><i class="fa fa-check"></i><b>17.2</b> SAS-GLM 分析</a></li>
<li class="chapter" data-level="17.3" data-path="chap17.html"><a href="chap17.html#sec17-3"><i class="fa fa-check"></i><b>17.3</b> 一个完整的分析</a></li>
<li class="chapter" data-level="17.4" data-path="chap17.html"><a href="chap17.html#sec17-4"><i class="fa fa-check"></i><b>17.4</b> 结束语</a></li>
<li class="chapter" data-level="17.5" data-path="chap17.html"><a href="chap17.html#sec17-5"><i class="fa fa-check"></i><b>17.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="18" data-path="chap18.html"><a href="chap18.html"><i class="fa fa-check"></i><b>18</b> 随机效应模型和方差分量</a>
<ul>
<li class="chapter" data-level="18.1" data-path="chap18.html"><a href="chap18.html#sec18-1"><i class="fa fa-check"></i><b>18.1</b> 介绍</a>
<ul>
<li class="chapter" data-level="18.1.1" data-path="chap18.html"><a href="chap18.html#sec18-1-1"><i class="fa fa-check"></i><b>18.1.1</b> 示例 18.1:随机效应嵌套处理结构</a></li>
</ul></li>
<li class="chapter" data-level="18.2" data-path="chap18.html"><a href="chap18.html#sec18-2"><i class="fa fa-check"></i><b>18.2</b> 矩阵表示法中的一般随机效应模型</a>
<ul>
<li class="chapter" data-level="18.2.1" data-path="chap18.html"><a href="chap18.html#sec18-2-1"><i class="fa fa-check"></i><b>18.2.1</b> 示例 18.2:单向随机效应模型</a></li>
</ul></li>
<li class="chapter" data-level="18.3" data-path="chap18.html"><a href="chap18.html#sec18-3"><i class="fa fa-check"></i><b>18.3</b> 计算期望均方</a>
<ul>
<li class="chapter" data-level="18.3.1" data-path="chap18.html"><a href="chap18.html#sec18-3-1"><i class="fa fa-check"></i><b>18.3.1</b> 代数方法</a></li>
<li class="chapter" data-level="18.3.2" data-path="chap18.html"><a href="chap18.html#sec18-3-2"><i class="fa fa-check"></i><b>18.3.2</b> Hartley 综合法的计算</a></li>
</ul></li>
<li class="chapter" data-level="18.4" data-path="chap18.html"><a href="chap18.html#sec18-4"><i class="fa fa-check"></i><b>18.4</b> 结束语</a></li>
<li class="chapter" data-level="18.5" data-path="chap18.html"><a href="chap18.html#sec18-5"><i class="fa fa-check"></i><b>18.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="19" data-path="chap19.html"><a href="chap19.html"><i class="fa fa-check"></i><b>19</b> 方差分量的估计方法</a>
<ul>
<li class="chapter" data-level="19.1" data-path="chap19.html"><a href="chap19.html#sec19-1"><i class="fa fa-check"></i><b>19.1</b> 矩法</a>
<ul>
<li class="chapter" data-level="19.1.1" data-path="chap19.html"><a href="chap19.html#sec19-1-1"><i class="fa fa-check"></i><b>19.1.1</b> 应用。示例 19.1:不均衡单向模型</a></li>
<li class="chapter" data-level="19.1.2" data-path="chap19.html"><a href="chap19.html#sec19-1-2"><i class="fa fa-check"></i><b>19.1.2</b> 示例 19.2:单向随机效应模型中的小麦品种</a></li>
<li class="chapter" data-level="19.1.3" data-path="chap19.html"><a href="chap19.html#sec19-1-3"><i class="fa fa-check"></i><b>19.1.3</b> 示例 19.3:表 18.2 中的双向设计数据</a></li>
</ul></li>
<li class="chapter" data-level="19.2" data-path="chap19.html"><a href="chap19.html#sec19-2"><i class="fa fa-check"></i><b>19.2</b> 最大似然</a>
<ul>
<li class="chapter" data-level="19.2.1" data-path="chap19.html"><a href="chap19.html#sec19-2-1"><i class="fa fa-check"></i><b>19.2.1</b> 示例 19.4:均衡单向模型的最大似然解</a></li>
</ul></li>
<li class="chapter" data-level="19.3" data-path="chap19.html"><a href="chap19.html#sec19-3"><i class="fa fa-check"></i><b>19.3</b> 受限或残差最大似然估计</a>
<ul>
<li class="chapter" data-level="19.3.1" data-path="chap19.html"><a href="chap19.html#sec19-3-1"><i class="fa fa-check"></i><b>19.3.1</b> 示例 19.5:均衡单向模型的 REML 解</a></li>
</ul></li>
<li class="chapter" data-level="19.4" data-path="chap19.html"><a href="chap19.html#sec19-4"><i class="fa fa-check"></i><b>19.4</b> MIVQUE 法</a>
<ul>
<li class="chapter" data-level="19.4.1" data-path="chap19.html"><a href="chap19.html#sec19-4-1"><i class="fa fa-check"></i><b>19.4.1</b> 方法说明</a></li>
<li class="chapter" data-level="19.4.2" data-path="chap19.html"><a href="chap19.html#sec19-4-2"><i class="fa fa-check"></i><b>19.4.2</b> 应用。示例 19.6:MIVQUE 用于不均衡单向设计</a></li>
</ul></li>
<li class="chapter" data-level="19.5" data-path="chap19.html"><a href="chap19.html#sec19-5"><i class="fa fa-check"></i><b>19.5</b> 使用 JMP 估计方差分量</a></li>
<li class="chapter" data-level="19.6" data-path="chap19.html"><a href="chap19.html#sec19-6"><i class="fa fa-check"></i><b>19.6</b> 结束语</a></li>
<li class="chapter" data-level="19.7" data-path="chap19.html"><a href="chap19.html#sec19-7"><i class="fa fa-check"></i><b>19.7</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="20" data-path="chap20.html"><a href="chap20.html"><i class="fa fa-check"></i><b>20</b> 方差分量的推断方法</a>
<ul>
<li class="chapter" data-level="20.1" data-path="chap20.html"><a href="chap20.html#sec20-1"><i class="fa fa-check"></i><b>20.1</b> 假设检验</a>
<ul>
<li class="chapter" data-level="20.1.1" data-path="chap20.html"><a href="chap20.html#sec20-1-1"><i class="fa fa-check"></i><b>20.1.1</b> 使用方差分析表</a></li>
<li class="chapter" data-level="20.1.2" data-path="chap20.html"><a href="chap20.html#sec20-1-2"><i class="fa fa-check"></i><b>20.1.2</b> 示例 20.1:完全随机设计结构中的双向随机效应检验统计量</a></li>
<li class="chapter" data-level="20.1.3" data-path="chap20.html"><a href="chap20.html#sec20-1-3"><i class="fa fa-check"></i><b>20.1.3</b> 示例 20.2:复杂三向随机效应检验统计量</a></li>
<li class="chapter" data-level="20.1.4" data-path="chap20.html"><a href="chap20.html#sec20-1-4"><i class="fa fa-check"></i><b>20.1.4</b> 似然比检验</a></li>
<li class="chapter" data-level="20.1.5" data-path="chap20.html"><a href="chap20.html#sec20-1-5"><i class="fa fa-check"></i><b>20.1.5</b> 示例 20.3:小麦品种——单向随机效应模型</a></li>
<li class="chapter" data-level="20.1.6" data-path="chap20.html"><a href="chap20.html#sec20-1-6"><i class="fa fa-check"></i><b>20.1.6</b> 示例 20.4:不均衡双向</a></li>
</ul></li>
<li class="chapter" data-level="20.2" data-path="chap20.html"><a href="chap20.html#sec20-2"><i class="fa fa-check"></i><b>20.2</b> 构造置信区间</a>
<ul>
<li class="chapter" data-level="20.2.1" data-path="chap20.html"><a href="chap20.html#sec20-2-1"><i class="fa fa-check"></i><b>20.2.1</b> 残差方差 <span class="math inline">\(\sigma^2_\varepsilon\)</span></a></li>
<li class="chapter" data-level="20.2.2" data-path="chap20.html"><a href="chap20.html#sec20-2-2"><i class="fa fa-check"></i><b>20.2.2</b> 一般 Satterthwaite 近似</a></li>
<li class="chapter" data-level="20.2.3" data-path="chap20.html"><a href="chap20.html#sec20-2-3"><i class="fa fa-check"></i><b>20.2.3</b> 方差分量函数的近似置信区间</a></li>
<li class="chapter" data-level="20.2.4" data-path="chap20.html"><a href="chap20.html#sec20-2-4"><i class="fa fa-check"></i><b>20.2.4</b> 方差分量的 Wald 型置信区间</a></li>
<li class="chapter" data-level="20.2.5" data-path="chap20.html"><a href="chap20.html#sec20-2-5"><i class="fa fa-check"></i><b>20.2.5</b> 一些精确的置信区间</a></li>
<li class="chapter" data-level="20.2.6" data-path="chap20.html"><a href="chap20.html#sec20-2-6"><i class="fa fa-check"></i><b>20.2.6</b> 示例 20.5:均衡单向随机效应处理结构</a></li>
<li class="chapter" data-level="20.2.7" data-path="chap20.html"><a href="chap20.html#sec20-2-7"><i class="fa fa-check"></i><b>20.2.7</b> 示例 20.6</a></li>
<li class="chapter" data-level="20.2.8" data-path="chap20.html"><a href="chap20.html#sec20-2-8"><i class="fa fa-check"></i><b>20.2.8</b> 示例 20.6 (续)</a></li>
</ul></li>
<li class="chapter" data-level="20.3" data-path="chap20.html"><a href="chap20.html#sec20-3"><i class="fa fa-check"></i><b>20.3</b> 模拟研究</a></li>
<li class="chapter" data-level="20.4" data-path="chap20.html"><a href="chap20.html#sec20-4"><i class="fa fa-check"></i><b>20.4</b> 结束语</a></li>
<li class="chapter" data-level="20.5" data-path="chap20.html"><a href="chap20.html#sec20-5"><i class="fa fa-check"></i><b>20.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="21" data-path="chap21.html"><a href="chap21.html"><i class="fa fa-check"></i><b>21</b> 案例研究:随机效应模型分析</a>
<ul>
<li class="chapter" data-level="21.1" data-path="chap21.html"><a href="chap21.html#sec21-1"><i class="fa fa-check"></i><b>21.1</b> 数据集</a></li>
<li class="chapter" data-level="21.2" data-path="chap21.html"><a href="chap21.html#sec21-2"><i class="fa fa-check"></i><b>21.2</b> 估计</a></li>
<li class="chapter" data-level="21.3" data-path="chap21.html"><a href="chap21.html#sec21-3"><i class="fa fa-check"></i><b>21.3</b> 模型构建</a></li>
<li class="chapter" data-level="21.4" data-path="chap21.html"><a href="chap21.html#sec21-4"><i class="fa fa-check"></i><b>21.4</b> 缩减模型</a></li>
<li class="chapter" data-level="21.5" data-path="chap21.html"><a href="chap21.html#sec21-5"><i class="fa fa-check"></i><b>21.5</b> 置信区间</a></li>
<li class="chapter" data-level="21.6" data-path="chap21.html"><a href="chap21.html#sec21-6"><i class="fa fa-check"></i><b>21.6</b> 使用 JMP 进行计算</a></li>
<li class="chapter" data-level="21.7" data-path="chap21.html"><a href="chap21.html#sec21-7"><i class="fa fa-check"></i><b>21.7</b> 结束语</a></li>
<li class="chapter" data-level="21.8" data-path="chap21.html"><a href="chap21.html#sec21-8"><i class="fa fa-check"></i><b>21.8</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="22" data-path="chap22.html"><a href="chap22.html"><i class="fa fa-check"></i><b>22</b> 混合模型的分析</a>
<ul>
<li class="chapter" data-level="22.1" data-path="chap22.html"><a href="chap22.html#sec22-1"><i class="fa fa-check"></i><b>22.1</b> 混合模型简介</a></li>
<li class="chapter" data-level="22.2" data-path="chap22.html"><a href="chap22.html#sec22-2"><i class="fa fa-check"></i><b>22.2</b> 混合模型随机效应部分的分析</a>
<ul>
<li class="chapter" data-level="22.2.1" data-path="chap22.html"><a href="chap22.html#sec22-2-1"><i class="fa fa-check"></i><b>22.2.1</b> 矩法</a></li>
<li class="chapter" data-level="22.2.2" data-path="chap22.html"><a href="chap22.html#sec22-2-2"><i class="fa fa-check"></i><b>22.2.2</b> 最大似然方法</a></li>
<li class="chapter" data-level="22.2.3" data-path="chap22.html"><a href="chap22.html#sec22-2-3"><i class="fa fa-check"></i><b>22.2.3</b> 残差最大似然法</a></li>
<li class="chapter" data-level="22.2.4" data-path="chap22.html"><a href="chap22.html#sec22-2-4"><i class="fa fa-check"></i><b>22.2.4</b> MINQUE 法</a></li>
</ul></li>
<li class="chapter" data-level="22.3" data-path="chap22.html"><a href="chap22.html#sec22-3"><i class="fa fa-check"></i><b>22.3</b> 混合模型固定效应部分的分析</a>
<ul>
<li class="chapter" data-level="22.3.1" data-path="chap22.html"><a href="chap22.html#sec22-3-1"><i class="fa fa-check"></i><b>22.3.1</b> 估计</a></li>
<li class="chapter" data-level="22.3.2" data-path="chap22.html"><a href="chap22.html#sec22-3-2"><i class="fa fa-check"></i><b>22.3.2</b> 置信区间的构建</a></li>
<li class="chapter" data-level="22.3.3" data-path="chap22.html"><a href="chap22.html#sec22-3-3"><i class="fa fa-check"></i><b>22.3.3</b> 假设检验</a></li>
</ul></li>
<li class="chapter" data-level="22.4" data-path="chap22.html"><a href="chap22.html#sec22-4"><i class="fa fa-check"></i><b>22.4</b> 最佳线性无偏预测</a></li>
<li class="chapter" data-level="22.5" data-path="chap22.html"><a href="chap22.html#sec22-5"><i class="fa fa-check"></i><b>22.5</b> 混合模型方程组</a></li>
<li class="chapter" data-level="22.6" data-path="chap22.html"><a href="chap22.html#sec22-6"><i class="fa fa-check"></i><b>22.6</b> 结束语</a></li>
<li class="chapter" data-level="22.7" data-path="chap22.html"><a href="chap22.html#sec22-7"><i class="fa fa-check"></i><b>22.7</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="23" data-path="chap23.html"><a href="chap23.html"><i class="fa fa-check"></i><b>23</b> 案例研究:混合模型</a>
<ul>
<li class="chapter" data-level="23.1" data-path="chap23.html"><a href="chap23.html#sec23-1"><i class="fa fa-check"></i><b>23.1</b> 双向混合模型</a></li>
<li class="chapter" data-level="23.2" data-path="chap23.html"><a href="chap23.html#sed23-2"><i class="fa fa-check"></i><b>23.2</b> 不均衡双向混合模型</a></li>
<li class="chapter" data-level="23.3" data-path="chap23.html"><a href="chap23.html#sec23-3"><i class="fa fa-check"></i><b>23.3</b> 不均衡双向数据集的 JMP 分析</a></li>
<li class="chapter" data-level="23.4" data-path="chap23.html"><a href="chap23.html#sec23-4"><i class="fa fa-check"></i><b>23.4</b> 结束语</a></li>
<li class="chapter" data-level="23.5" data-path="chap23.html"><a href="chap23.html#sec23-5"><i class="fa fa-check"></i><b>23.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="24" data-path="chap24.html"><a href="chap24.html"><i class="fa fa-check"></i><b>24</b> 分析裂区型设计的方法</a>
<ul>
<li class="chapter" data-level="24.1" data-path="chap24.html"><a href="chap24.html#sec24-1"><i class="fa fa-check"></i><b>24.1</b> 介绍</a>
<ul>
<li class="chapter" data-level="24.1.1" data-path="chap24.html"><a href="chap24.html#sec24-1-1"><i class="fa fa-check"></i><b>24.1.1</b> 示例 24.1:面包配方和烘焙温度</a></li>
<li class="chapter" data-level="24.1.2" data-path="chap24.html"><a href="chap24.html#sec24-1-2"><i class="fa fa-check"></i><b>24.1.2</b> 示例 24.2:在不同肥力条件下生长的小麦品种</a></li>
</ul></li>
<li class="chapter" data-level="24.2" data-path="chap24.html"><a href="chap24.html#sec24-2"><i class="fa fa-check"></i><b>24.2</b> 模型定义和参数估计</a></li>
<li class="chapter" data-level="24.3" data-path="chap24.html"><a href="chap24.html#sec24-3"><i class="fa fa-check"></i><b>24.3</b> 均值间比较的标准误</a></li>
<li class="chapter" data-level="24.4" data-path="chap24.html"><a href="chap24.html#sec24-4"><i class="fa fa-check"></i><b>24.4</b> 计算均值差标准误的一般方法</a>
<ul>
<li class="chapter" data-level="24.4.1" data-path="chap24.html"><a href="chap24.html#sec24-5"><i class="fa fa-check"></i><b>24.4.1</b> 通过一般对比进行比较</a></li>
</ul></li>
<li class="chapter" data-level="24.5" data-path="chap24.html"><a href="chap24.html#sec24-6"><i class="fa fa-check"></i><b>24.5</b> 其他示例</a>
<ul>
<li class="chapter" data-level="24.5.1" data-path="chap24.html"><a href="chap24.html#sec24-6-1"><i class="fa fa-check"></i><b>24.5.1</b> 示例 24.3:水分和肥料</a></li>
<li class="chapter" data-level="24.5.2" data-path="chap24.html"><a href="chap24.html#sec24-6-2"><i class="fa fa-check"></i><b>24.5.2</b> 示例 24.4:具有裂区误差的回归</a></li>
<li class="chapter" data-level="24.5.3" data-path="chap24.html"><a href="chap24.html#sec24-6-3"><i class="fa fa-check"></i><b>24.5.3</b> 示例 24.5:混乱的裂区设计</a></li>
<li class="chapter" data-level="24.5.4" data-path="chap24.html"><a href="chap24.html#sec24-6-4"><i class="fa fa-check"></i><b>24.5.4</b> 示例 24.6:裂-裂区设计</a></li>
</ul></li>
<li class="chapter" data-level="24.6" data-path="chap24.html"><a href="chap24.html#sec24-7"><i class="fa fa-check"></i><b>24.6</b> 样本量和功效考虑</a></li>
<li class="chapter" data-level="24.7" data-path="chap24.html"><a href="chap24.html#sec24-8"><i class="fa fa-check"></i><b>24.7</b> 使用 JMP 进行计算:示例 24.7</a></li>
<li class="chapter" data-level="24.8" data-path="chap24.html"><a href="chap24.html#sec24-9"><i class="fa fa-check"></i><b>24.8</b> 结束语</a></li>
<li class="chapter" data-level="24.9" data-path="chap24.html"><a href="chap24.html#sec24-10"><i class="fa fa-check"></i><b>24.9</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="25" data-path="chap25.html"><a href="chap25.html"><i class="fa fa-check"></i><b>25</b> 分析条区型设计的方法</a>
<ul>
<li class="chapter" data-level="25.1" data-path="chap25.html"><a href="chap25.html#sec25-1"><i class="fa fa-check"></i><b>25.1</b> 条区设计和模型的描述</a></li>
<li class="chapter" data-level="25.2" data-path="chap25.html"><a href="chap25.html#sec25-2"><i class="fa fa-check"></i><b>25.2</b> 推断技术</a></li>
<li class="chapter" data-level="25.3" data-path="chap25.html"><a href="chap25.html#sec25-3"><i class="fa fa-check"></i><b>25.3</b> 示例:氮与灌溉</a></li>
<li class="chapter" data-level="25.4" data-path="chap25.html"><a href="chap25.html#sec25-4"><i class="fa fa-check"></i><b>25.4</b> 示例:含裂区的条区 1</a></li>
<li class="chapter" data-level="25.5" data-path="chap25.html"><a href="chap25.html#sec25-5"><i class="fa fa-check"></i><b>25.5</b> 示例:含裂区的条区 2</a></li>
<li class="chapter" data-level="25.6" data-path="chap25.html"><a href="chap25.html#sec25-6"><i class="fa fa-check"></i><b>25.6</b> 示例:含裂区的条区 3</a></li>
<li class="chapter" data-level="25.7" data-path="chap25.html"><a href="chap25.html#sec25-7"><i class="fa fa-check"></i><b>25.7</b> 示例:含裂区的条区 4</a></li>
<li class="chapter" data-level="25.8" data-path="chap25.html"><a href="chap25.html#sec25-8"><i class="fa fa-check"></i><b>25.8</b> 条-条区的设计与分析:基于 JMP7</a></li>
<li class="chapter" data-level="25.9" data-path="chap25.html"><a href="chap25.html#sec25-9"><i class="fa fa-check"></i><b>25.9</b> 结束语</a></li>
<li class="chapter" data-level="25.10" data-path="chap25.html"><a href="chap25.html#sec25-10"><i class="fa fa-check"></i><b>25.10</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="26" data-path="chap26.html"><a href="chap26.html"><i class="fa fa-check"></i><b>26</b> 分析重复测量实验的方法</a>
<ul>
<li class="chapter" data-level="26.1" data-path="chap26.html"><a href="chap26.html#sec26-1"><i class="fa fa-check"></i><b>26.1</b> 模型指定和理想条件</a></li>
<li class="chapter" data-level="26.2" data-path="chap26.html"><a href="chap26.html#sec26-2"><i class="fa fa-check"></i><b>26.2</b> 时间的裂区分析</a>
<ul>
<li class="chapter" data-level="26.2.1" data-path="chap26.html"><a href="chap26.html#sec26-2-1"><i class="fa fa-check"></i><b>26.2.1</b> 示例 26.1:药物对心率的影响</a></li>
<li class="chapter" data-level="26.2.2" data-path="chap26.html"><a href="chap26.html#sec26-2-2"><i class="fa fa-check"></i><b>26.2.2</b> 示例 26.2:一个复杂的舒适度实验</a></li>
<li class="chapter" data-level="26.2.3" data-path="chap26.html"><a href="chap26.html#sec26-2-3"><i class="fa fa-check"></i><b>26.2.3</b> 示例 26.3:家庭态度</a></li>
</ul></li>
<li class="chapter" data-level="26.3" data-path="chap26.html"><a href="chap26.html#sec26-3"><i class="fa fa-check"></i><b>26.3</b> 使用 SAS-Mixed 程序的数据分析</a>
<ul>
<li class="chapter" data-level="26.3.1" data-path="chap26.html"><a href="chap26.html#sec26-3-1"><i class="fa fa-check"></i><b>26.3.1</b> 示例 26.1</a></li>
<li class="chapter" data-level="26.3.2" data-path="chap26.html"><a href="chap26.html#sec26-3-2"><i class="fa fa-check"></i><b>26.3.2</b> 示例 26.2</a></li>
<li class="chapter" data-level="26.3.3" data-path="chap26.html"><a href="chap26.html#sec26-3-3"><i class="fa fa-check"></i><b>26.3.3</b> 示例 26.3</a></li>
</ul></li>
<li class="chapter" data-level="26.4" data-path="chap26.html"><a href="chap26.html#sec26-4"><i class="fa fa-check"></i><b>26.4</b> 结束语</a></li>
<li class="chapter" data-level="26.5" data-path="chap26.html"><a href="chap26.html#sec26-5"><i class="fa fa-check"></i><b>26.5</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="27" data-path="chap27.html"><a href="chap27.html"><i class="fa fa-check"></i><b>27</b> 不满足理想条件时重复测量实验的分析</a>
<ul>
<li class="chapter" data-level="27.1" data-path="chap27.html"><a href="chap27.html#sec27-1"><i class="fa fa-check"></i><b>27.1</b> 介绍</a></li>
<li class="chapter" data-level="27.2" data-path="chap27.html"><a href="chap27.html#sec27-2"><i class="fa fa-check"></i><b>27.2</b> MANOVA 法</a></li>
<li class="chapter" data-level="27.3" data-path="chap27.html"><a href="chap27.html#sec27-3"><i class="fa fa-check"></i><b>27.3</b> <span class="math inline">\(p\)</span> 值调整法</a></li>
<li class="chapter" data-level="27.4" data-path="chap27.html"><a href="chap27.html#sec27-4"><i class="fa fa-check"></i><b>27.4</b> 混合模型法</a>
<ul>
<li class="chapter" data-level="27.4.1" data-path="chap27.html"><a href="chap27.html#sec27-4-1"><i class="fa fa-check"></i><b>27.4.1</b> 最大似然法</a></li>
<li class="chapter" data-level="27.4.2" data-path="chap27.html"><a href="chap27.html#sec27-4-2"><i class="fa fa-check"></i><b>27.4.2</b> 受限最大似然法</a></li>
</ul></li>
<li class="chapter" data-level="27.5" data-path="chap27.html"><a href="chap27.html#sec27-5"><i class="fa fa-check"></i><b>27.5</b> 总结</a></li>
<li class="chapter" data-level="27.6" data-path="chap27.html"><a href="chap27.html#sec27-6"><i class="fa fa-check"></i><b>27.6</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="28" data-path="chap28.html"><a href="chap28.html"><i class="fa fa-check"></i><b>28</b> 案例研究:重复测量的复杂例子</a>
<ul>
<li class="chapter" data-level="28.1" data-path="chap28.html"><a href="chap28.html#sec28-1"><i class="fa fa-check"></i><b>28.1</b> 复杂舒适度实验</a></li>
<li class="chapter" data-level="28.2" data-path="chap28.html"><a href="chap28.html#sec28-2"><i class="fa fa-check"></i><b>28.2</b> 家庭态度实验</a></li>
<li class="chapter" data-level="28.3" data-path="chap28.html"><a href="chap28.html#sec28-3"><i class="fa fa-check"></i><b>28.3</b> 多地点研究</a></li>
<li class="chapter" data-level="28.4" data-path="chap28.html"><a href="chap28.html#sec28-4"><i class="fa fa-check"></i><b>28.4</b> 练习</a></li>
</ul></li>
<li class="chapter" data-level="29" data-path="chap29.html"><a href="chap29.html"><i class="fa fa-check"></i><b>29</b> 交叉设计的分析</a>
<ul>
<li class="chapter" data-level="29.1" data-path="chap29.html"><a href="chap29.html#sec29-1"><i class="fa fa-check"></i><b>29.1</b> 定义,假设和模型</a></li>
<li class="chapter" data-level="29.2" data-path="chap29.html"><a href="chap29.html#sec29-2"><i class="fa fa-check"></i><b>29.2</b> 两时期/两处理交叉设计</a></li>
<li class="chapter" data-level="29.3" data-path="chap29.html"><a href="chap29.html#sec29-3"><i class="fa fa-check"></i><b>29.3</b> 具有两个以上时期的交叉设计</a></li>
<li class="chapter" data-level="29.4" data-path="chap29.html"><a href="chap29.html#sec29-4"><i class="fa fa-check"></i><b>29.4</b> 具有两种以上处理的交叉设计</a></li>
<li class="chapter" data-level="29.5" data-path="chap29.html"><a href="chap29.html#sec29-5"><i class="fa fa-check"></i><b>29.5</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="30" data-path="chap30.html"><a href="chap30.html"><i class="fa fa-check"></i><b>30</b> 嵌套设计的分析</a>
<ul>
<li class="chapter" data-level="30.1" data-path="chap30.html"><a href="chap30.html#sec30-1"><i class="fa fa-check"></i><b>30.1</b> 定义,假设和模型</a>
<ul>
<li class="chapter" data-level="30.1.1" data-path="chap30.html"><a href="chap30.html#sec30-1-1"><i class="fa fa-check"></i><b>30.1.1</b> 示例 30.1:公司和杀虫剂</a></li>
<li class="chapter" data-level="30.1.2" data-path="chap30.html"><a href="chap30.html#sec30-1-2"><i class="fa fa-check"></i><b>30.1.2</b> 示例 30.2:舒适度实验回顾</a></li>
<li class="chapter" data-level="30.1.3" data-path="chap30.html"><a href="chap30.html#sec30-1-3"><i class="fa fa-check"></i><b>30.1.3</b> 示例 30.3:咖啡价格示例回顾</a></li>
</ul></li>
<li class="chapter" data-level="30.2" data-path="chap30.html"><a href="chap30.html#sec30-2"><i class="fa fa-check"></i><b>30.2</b> 参数估计</a>
<ul>
<li class="chapter" data-level="30.2.1" data-path="chap30.html"><a href="chap30.html#sec30-2-1"><i class="fa fa-check"></i><b>30.2.1</b> 示例 30.1:继续</a></li>
<li class="chapter" data-level="30.2.2" data-path="chap30.html"><a href="chap30.html#sec30-2-2"><i class="fa fa-check"></i><b>30.2.2</b> 示例 30.2:继续</a></li>
<li class="chapter" data-level="30.2.3" data-path="chap30.html"><a href="chap30.html#sec30-2-3"><i class="fa fa-check"></i><b>30.2.3</b> 示例 30.3:继续</a></li>
</ul></li>
<li class="chapter" data-level="30.3" data-path="chap30.html"><a href="chap30.html#sec30-3"><i class="fa fa-check"></i><b>30.3</b> 假设检验和置信区间的构建</a>
<ul>
<li class="chapter" data-level="30.3.1" data-path="chap30.html"><a href="chap30.html#sec30-3-1"><i class="fa fa-check"></i><b>30.3.1</b> 示例 30.1:继续</a></li>
</ul></li>
<li class="chapter" data-level="30.4" data-path="chap30.html"><a href="chap30.html#sec30-4"><i class="fa fa-check"></i><b>30.4</b> 使用 JMP 进行分析</a></li>
<li class="chapter" data-level="30.5" data-path="chap30.html"><a href="chap30.html#sec30-5"><i class="fa fa-check"></i><b>30.5</b> 结束语</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="References.html"><a href="References.html"><i class="fa fa-check"></i>References</a></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">混乱数据分析:设计的实验</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="chap24" class="section level1 hasAnchor" number="24">
<h1><span class="header-section-number">第 24 章</span> 分析裂区型设计的方法<a href="chap24.html#chap24" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<blockquote>
<p>“Numerical quantities focus on expected values, graphical summaries on unexpected values.” - John Tukey</p>
</blockquote>
<div id="sec24-1" class="section level2 hasAnchor" number="24.1">
<h2><span class="header-section-number">24.1</span> 介绍<a href="chap24.html#sec24-1" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p><strong>裂区型设计</strong> (split-plot type design) 涉及一种具有多个实验单元尺寸的设计结构,其中较小尺寸的实验单元嵌套在较大尺寸的实验单元内。第 <a href="chap5.html#chap5">5</a> 章介绍了裂区设计结构的一些示例,包括分层设计结构类 (class of hierarchal design structures). 裂区型设计结构的设计和分析存在两个主要问题。第一个问题包括选择和/或识别设计结构中使用的不同尺寸的实验单元,然后将处理从处理结构分配到设计结构中的不同实验单元尺寸。成功识别不同尺寸的实验单元对于指定可以描述结果数据的适当模型至关重要。第二个问题是构建适当的模型来描述处理和设计结构的相关特征。能够识别与每种尺寸的实验单元相关的变异源是很重要的。这些变异源用于计算各自的误差项,所述误差项用于计算均值估计的标准误估计 (estimates of the standard errors of estimated means) 以及用于均值之间的成对比较。由于这些设计结构涉及一个以上尺寸的实验单元,因此固定效应参数的标准误估计及其之间的比较涉及一个或多个变异源。裂区型设计模型的一个非常重要的特征是,它们是第 <a href="chap26.html#chap26">26</a> 章中讨论的重复测量模型构建的基本模型。第 <a href="chap5.html#chap5">5</a> 章介绍了几个概念的例子。</p>
<p>第 <a href="chap24.html#sec24-1">24.1</a> 节解释了具有两种尺寸实验单元的裂区或分层设计结构的设计和分析,第 <a href="chap24.html#sec24-2">24.2</a> 节描述了与固定效应相关的标准误的确定和估计。第 <a href="chap24.html#sec24-3">24.3</a> 节讨论了在一般裂区设计结构中确定适当标准误及其对固定效应参数估计的一般方法。均值对比的标准误的计算在第 <a href="chap24.html#sec24-4">24.4</a> 节中讨论。第 <a href="chap24.html#sec24-6">24.5</a> 节介绍了裂区设计结构的四个示例,其中每个示例都演示了分析此类设计的一些显著特征。第 <a href="chap24.html#sec24-7">24.6</a> 节讨论了裂区设计结构样本量的确定和功效的计算。本章给出了使用 SAS<sup>®</sup>-Mixed 和 JMP<sup>®</sup> 的分析,其中 JMP 分析如第 <a href="chap24.html#sec24-8">24.7</a> 节所示。</p>
<p>构建裂区设计模型的关键概念是识别实验单元的不同尺寸,然后确定相应的设计结构和处理结构。整体模型是通过整合为每种尺寸的实验单元开发的模型而构建的。第 <a href="chap5.html#chap5">5</a> 章中给出了模型构建的几个例子,但没有说明模型的基本假设。这些假设是,表示各种实验单元误差项的分量都是独立分布的,均值为零,并具有相关的方差 (associated variance)(更一般的假设请参见第 <a href="chap26.html#chap26">26</a> 章)。在理想条件下,误差项呈正态分布。分析的目的是利用模型假设来获得总体参数的估计,并对其进行推断。在以下示例中,将使用矩法和 REML 方法来演示估计固定效应标准误所需的计算。在实践中,<strong>REML 是可在大多数情况下推荐使用的方法</strong>。</p>
<div id="sec24-1-1" class="section level3 hasAnchor" number="24.1.1">
<h3><span class="header-section-number">24.1.1</span> 示例 24.1:面包配方和烘焙温度<a href="chap24.html#sec24-1-1" class="anchor-section" aria-label="Anchor link to header"></a></h3>
<p>烤面包的过程包括根据配方 (recipe) 的规格混合一批面包面团,将面团放入烤盘(容器)中,让面包发酵,然后将装有面包面团的烤盘放入烤箱 (oven) 中,在特定的温度 (temperature) 和时间组合下进行烘烤。每个烤箱都足够大,可以同时放入四个装有面包面团的烤盘。我们设计了一项实验,以评估四种不同的面包配方在三种不同温度下的烘烤效果,其中测量的响应是最终面包的体积。过程是,根据这四种配方分别制作面团,并将每种配方的一个面包放入设定为特定温度的单个烤箱中。这些批次在烤箱中放置指定的时间长度,然后将面包冷却至室温后再测量其体积。表 <a href="chap24.html#tab:table24-1">24.1</a> 中的数据是在三天内重复该过程时,由四种配方和三种温度制成的面包的体积。在设计结构中,天 (day) 被视为一个区组因子。</p>
<table>
<caption>
<span id="tab:table24-1">表 24.1: </span>示例 <a href="chap24.html#sec24-1-1">24.1</a> 各种配方和温度下的面包体积 (cm<sup>3</sup>)
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.1.png">
</td>
</tr>
</tbody>
</table>
<p>图 <a href="chap24.html#fig:figure24-1">24.1</a> 中的图表演示了为烤箱分配温度的过程,因此烤箱是温度水平的实验单元(请注意,配方不包括在该过程的此步骤中)。与烤箱尺寸实验单元相关的设计是随机完全区组设计结构(三天)中的单向处理结构(三个温度水平)。可用于描述每个烤箱内四个面包的平均面包体积(即每个烤箱一次观测)的模型是</p>
<p><span class="math display">\[y_{ik}^o=\mu_i^o+d_k^o+o_{ik}^o\]</span></p>
<p>其中 <span class="math inline">\(y_{ik}^o\)</span> 表示观测到的平均面包体积,<span class="math inline">\(\mu_{i}^o\)</span> 表示第 i 个温度水平的平均面包体积,<span class="math inline">\(d_{k}^o\)</span> 表示第 k 天的随机效应,<span class="math inline">\(o_{ik}^o\)</span> 表示第 i 个温度和第 k 天的随机烤箱效应。假设 <span class="math inline">\(d_{k}^o\thicksim i.i.d.N(0,\sigma_d^2),o_{ik}^o\thicksim i.i.d.N(0,\sigma_o^2)\)</span> 并且所有 <span class="math inline">\(d_{k}^o,o_{ik}^o\)</span> 独立。与烤箱模型相关的方差分析显示在表 <a href="chap24.html#tab:table24-2">24.2</a> 中,其中烤箱误差项计算为温度与天的交互均方。</p>
<div class="figure" style="text-align: center"><span style="display:block;" id="fig:figure24-1"></span>
<img src="figure/figure%2024.1.png" alt="显示每天将温度随机化到烤箱的示意图" width="850" />
<p class="caption">
图 24.1: 显示每天将温度随机化到烤箱的示意图
</p>
</div>
<table>
<caption>
<span id="tab:table24-2">表 24.2: </span>烤箱水平分析的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.2.png">
</td>
</tr>
</tbody>
</table>
<p>图 <a href="chap24.html#fig:figure24-2">24.2</a> 中的图表显示了将配方分配到每个烤箱内的位置。一天内的烤箱是四个配方的一个区组。每个配方提供一条面包。面包设计是一个单向处理结构(四个配方),采用随机完全区组设计结构,共有九个区组(三天中每天三个区组或烤箱)。</p>
<div class="figure" style="text-align: center"><span style="display:block;" id="fig:figure24-2"></span>
<img src="figure/figure%2024.2.png" alt="显示每天将配方随机化到一个烤箱内的位置的示意图" width="852" />
<p class="caption">
图 24.2: 显示每天将配方随机化到一个烤箱内的位置的示意图
</p>
</div>
<p>如果所有烤箱处于相同温度,则数据结构将是随机完全区组设计结构中的单向处理结构。但并非所有烤箱都经相同处理,三个烤箱设置为 325°F,三个设置为 340°F,三个设置为 355°F。接下来通过考虑 325°F 的所有数据来简化设计,如图 <a href="chap24.html#fig:figure24-3">24.3</a> 所示。所得数据来自具有三个区组的随机完全区组设计结构中的单向处理结构。该数据的误差项是配方与天的交互作用。可用于描述 325°F 烤箱数据的模型是</p>
<p><span class="math display">\[y_{jk}^+=\mu_j^++o_k^++\varepsilon_{jk}^+\]</span></p>
<p>其中 <span class="math inline">\(y_{jk}^+\)</span> 表示第 k 天在第 j 个配方的 325°F 烤箱中观测到的面包体积,<span class="math inline">\(\mu_{j}^+\)</span> 表示第 j 个配方的平均面包体积,<span class="math inline">\(o_{ik}^o\)</span> 表示第 k 天使用的烤箱的随机效应,以及 <span class="math inline">\(\varepsilon_{jk}^+\)</span> 表示第 j 个配方和第 k 天的随机面包效应。假设 <span class="math inline">\(o_k^+\thicksim i.i.d.N(0,\sigma_0^2),\varepsilon_{jk}^+\thicksim i.i.d.N(0,\sigma_\varepsilon^2)\)</span> 且所有 <span class="math inline">\(o_k^+,\varepsilon_{jk}^+\)</span> 独立分布。与面包模型相关的方差分析显示在表 <a href="chap24.html#tab:table24-3">24.3</a> 中,其中面包误差项根据天与配方的交互均方来估计。</p>
<div class="figure" style="text-align: center"><span style="display:block;" id="fig:figure24-3"></span>
<img src="figure/figure%2024.3.png" alt="325°F 烤箱设计的一部分" width="852" />
<p class="caption">
图 24.3: 325°F 烤箱设计的一部分
</p>
</div>
<table>
<caption>
<span id="tab:table24-3">表 24.3: </span>325°F 下面包体积数据的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.3.png">
</td>
</tr>
</tbody>
</table>
<p>测量面包间变异性的误差项是通过合并三天内不同温度下的配方与天交互作用计算得出的 (The error term that measures the loaf to loaf variability is computed by pooling the recipe by day interaction across the three temperatures),得到 Error(loaf)=Recipe × Day(Temperature). 将这两个模型结合起来得到模型</p>
<p><span class="math display">\[y_{ijk}=\mu_{ij}+d_k+o_{ik}+\varepsilon_{ijk},\quad i=1,2,3,\quad j=1,2,3,4,\quad k=1,2,3\]</span></p>
<p>其中 <span class="math inline">\({\mu}_{ij}={\mu}+T_i+R_j+(TR)_{ij}\)</span>,<span class="math inline">\(T_i\)</span> 表示第 i 个温度的效应,<span class="math inline">\(R_i\)</span> 表示第 j 个配方的效应,<span class="math inline">\((TR)_{ij}\)</span> 表示温度与配方交互作用,<span class="math inline">\(d_k\)</span> 表示第 k 天的效应,<span class="math inline">\(o_{ik}\)</span> 表示第 k 天的第 i 个烤箱的效应,以及 <span class="math inline">\(\varepsilon_{ijk}\)</span> 表示误差项。在理想条件下 <span class="math inline">\(d_k\thicksim i.i.d.N(0,\sigma_{\mathrm{day}}^2),o_{ik}\thicksim i.i.d.N(0,\sigma_{\mathrm{oven}}^2),\varepsilon_{ijk}\thicksim i.i.d.N(0,\sigma_{\mathrm{loaf}}^2)\)</span>,且所有 <span class="math inline">\(d_k,o_{ik},\varepsilon_{ijk}\)</span> 独立分布。烤箱是整区 (whole plot) 或较大尺寸的实验单元,面包是子区 (subplot) 或裂区 (split-plot) 或较小尺寸的实验单元。</p>
<p>该模型可以用实验单元的尺寸表示为</p>
<p><span class="math display">\[\begin{aligned}y_{ijk}=&\mu_{ij}+d_k+T_i+o_{ik} &&\}\quad\text{whole-plot or oven part of the model}
\\&+R_j+(TR)_{ij}+\varepsilon_{ijk}&&\}\quad\text{subplot or loaf part of the model}\end{aligned}\]</span></p>
<p>结合表 <a href="chap24.html#tab:table24-2">24.2</a> 和 <a href="chap24.html#tab:table24-3">24.3</a> 中的方差分析表给出表 <a href="chap24.html#tab:table24-4">24.4</a> 中该模型的方差分析表。预期望均方决定了计算固定效应检验统计量的适当分母。Error(oven) 用作检验温度主效应的误差,Error(loaf) 用作检验配方主效应和配方与温度交互效应的误差。表 <a href="chap24.html#tab:table24-5">24.5</a> 中列出了面包体积数据的 SAS-Mixed 代码和方差分析结果表。有迹象表明存在显著的温度与配方交互作用 (p = 0.0021),因此应进一步比较 temperature × recipe 的双向均值(参见第 <a href="chap24.html#tab:table24-2">24.2</a> 节)</p>
<table>
<caption>
<span id="tab:table24-4">表 24.4: </span>示例 <a href="chap24.html#sec24-1-1">24.1</a> 面包体积数据的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.4.png">
</td>
</tr>
</tbody>
</table>
<table>
<caption>
<span id="tab:table24-5">表 24.5: </span>示例 <a href="chap24.html#sec24-1-1">24.1</a> 面包体积数据的方差分析表和 SAS-Mixed 代码
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.5.png">
</td>
</tr>
</tbody>
</table>
</div>
<div id="sec24-1-2" class="section level3 hasAnchor" number="24.1.2">
<h3><span class="header-section-number">24.1.2</span> 示例 24.2:在不同肥力条件下生长的小麦品种<a href="chap24.html#sec24-1-2" class="anchor-section" aria-label="Anchor link to header"></a></h3>
<p>图 <a href="chap24.html#fig:figure24-4">24.4</a> 中的数据是在四种不同的肥力条件 (fertility regimes) 下(A1, A2, A3 和 A4)种植的两种小麦(B1 和 B2)的产量(单位为磅)。田地被分成两个区组 (blocks),每个区组有四个整区 (whole plots). 每个肥料 (fertilizer) 水平被随机分配到每个区组内的一个整区。因此,整区设计由一个单向处理结构(肥料的四个水平)组成,该结构是一个具有两个区组的随机完全区组设计结构。每个区组包含四个整区实验单元,这些单元被分成两部分(称为子区,subplots)。每种小麦被随机分配到每个整区内的一个子区。子区设计由单向处理结构(两个品种)和随机完全区组设计组成,共有八个区组,每个区组包含两个子区实验单元。可用于描述这些数据的模型是</p>
<p><span class="math display">\[y_{ijk}=\mu_{ij}+b_k+w_{ik}+\varepsilon_{ijk},\quad i=1,2,3,4,\quad j=1,2,k=1,2\]</span></p>
<p>其中,<span class="math inline">\(\mu_{ij}\)</span> 表示第 i 个肥料水平和第 j 个品种的预期响应(产量),<span class="math inline">\(y_{ijk}\)</span> 表示第 k 个肥料水平和第 j 个品种的观测产量(响应),<span class="math inline">\(b_k\)</span> 表示假设分布为 <span class="math inline">\(i.i.d.N(0,\sigma_{\mathrm{block}}^2)\)</span> 的区组效应,<span class="math inline">\(w_{ik}\)</span> 表示假设分布为 <span class="math inline">\(i.i.d.~N(0,~\sigma_{wp}^2)\)</span> 的整区误差,以及 <span class="math inline">\(\varepsilon_{ijk}\)</span> 表示假设分布为 <span class="math inline">\(i.i.d.~N(0,~\sigma_{\varepsilon}^2)\)</span> 的子区误差。还假设所有 <span class="math inline">\(b_k,w_{ik},\varepsilon_{ijk}\)</span> 独立分布。平均响应可以使用效应模型表示为 <span class="math inline">\(\mu_{ij}=\mu+F_i+V_j+(FV)_{ij}\)</span>. 该效应模型的方差分析表见表 <a href="chap24.html#tab:table24-6">24.6</a>. 三个固定效应比较的 <span class="math inline">\(F\)</span> 检验的分母由期望均方确定;也就是说,Error(whole plot) 用于检验肥料主效应,Error(subplot) 用于检验通过品种主效应和肥料与品种交互效应。表 <a href="chap24.html#tab:table24-7">24.7</a> 给出了 SAS Mixed 代码和使用 III 型平方和的数值结果,表 <a href="chap24.html#tab:table24-8">24.8</a> 给出了使用 REML 选项的结果。这两种分析的固定效应的 <span class="math inline">\(F\)</span> 检验是相同的,因为数据集是均衡的,并且两个方差分量的估计都大于零。</p>
<div class="figure" style="text-align: center"><span style="display:block;" id="fig:figure24-4"></span>
<img src="figure/figure%2024.4.png" alt="品种与肥力条件的裂区示例数据" width="708" />
<p class="caption">
图 24.4: 品种与肥力条件的裂区示例数据
</p>
</div>
<table>
<caption>
<span id="tab:table24-6">表 24.6: </span>示例 <a href="chap24.html#sec24-1-2">24.2</a> 小麦产量数据的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.6.png">
</td>
</tr>
</tbody>
</table>
<table>
<caption>
<span id="tab:table24-7">表 24.7: </span>示例 <a href="chap24.html#sec24-1-2">24.2</a> 小麦产量数据使用 III 型平方和的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.7.png">
</td>
</tr>
</tbody>
</table>
<table>
<caption>
<span id="tab:table24-8">表 24.8: </span>示例 <a href="chap24.html#sec24-1-2">24.2</a> 小麦产量数据使用 REML 的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.8.png">
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="sec24-2" class="section level2 hasAnchor" number="24.2">
<h2><span class="header-section-number">24.2</span> 模型定义和参数估计<a href="chap24.html#sec24-2" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>考虑随机完全区组整区设计结构的裂区设计,其中具有 r 个区组、整区因子 A 有 a 个水平以及子区因子 C 有 c 个水平,其一般模型可以表达为:</p>
<p><span class="math display">\[y_{ijk}=\mu+\alpha_i+b_k+w_{ik}+\gamma_j+(\alpha\gamma)_{ij}+\varepsilon_{ijk},\quad i=1,2,\ldots,a,\quad j=1,2,\ldots,c,\quad k=1,2,\ldots,r\]</span></p>
<p>其中,<span class="math inline">\(y_{ijk}\)</span> 是观测到的响应,<span class="math inline">\(b_k\)</span> 表示第 k 个区组效应,假设其分布为 <span class="math inline">\(N(0,\sigma_B^2)\)</span>,<span class="math inline">\(w_{ik}\)</span> 表示整区误差,假设其分布为 <span class="math inline">\(N(0,\sigma_w^2)\)</span>,<span class="math inline">\(\varepsilon_{ijk}\)</span> 表示子区误差,假设其分布为 <span class="math inline">\(N(0,\sigma_\varepsilon^2)\)</span>. 还假设所有的 <span class="math inline">\(b_k,w_{ik},\varepsilon_{ijk}\)</span> 都是独立分布的。值得注意的是,最重要的假设是所有的 <span class="math inline">\(b_k,w_{ik},\varepsilon_{ijk}\)</span> 都是独立分布的。幸运的是,由于固定效应因子被随机分配到其适当尺寸的实验单元,这一假设可以通过随机化过程得到保证。该模型中的固定效应包括总均值 <span class="math inline">\(\mu\)</span>,整区因子(A)的效应 <span class="math inline">\(\alpha_i\)</span>、子区因子(C)的效应 <span class="math inline">\(\gamma_j\)</span>,以及整区因子水平和子区因子水平之间的交互效应 <span class="math inline">\((\alpha\gamma)_{ij}\)</span>. 均值模型可以用效应模型表示为 <span class="math inline">\(\mu_{ij}=\mu+\alpha_i+\gamma_j+(\alpha\gamma)_{ij}\)</span>. 表 <a href="chap24.html#tab:table24-9">24.9</a> 给出了这个一般模型的方差分析表,包括变异来源、自由度和期望均方。</p>
<table>
<caption>
<span id="tab:table24-9">表 24.9: </span><a href="chap24.html#sec24-1">24.1</a> 节一般裂区模型的方差分析表
</caption>
<thead>
<tr>
<th style="text-align:center;color: white !important;background-color: white !important;font-size: 0px;">
x
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:center;">
<img src="table/table%2024.9.png">
</td>
</tr>
</tbody>
</table>
<p>整区误差计算为 Block × A 交互作用,子区误差是通过合并 A 的所有水平下 Block × C 交互作用计算得出的,记作 Block × C(A). 用于获得方差分量矩法估计的方程组为</p>
<p><span class="math display">\[\begin{aligned}
\text{MSBlock}& =\tilde{{\sigma}}_\varepsilon^2+c\tilde{{\sigma}}_w^2+ac\tilde{{\sigma}}_B^2 \\
\text{MSError(whole plot)}& =\tilde{\sigma}_\varepsilon^2+c\tilde{\sigma}_w^2 \\
MSError(subplot)&=\tilde{\sigma}_\varepsilon^2
\end{aligned}\]</span></p>
<p>这些方程的矩法解是</p>
<p><span class="math display">\[\begin{aligned}
\tilde{{\sigma}}_\varepsilon^2& =MSError(subplot) \\
\tilde{{\sigma}}_w^2& =\frac{MSError(wholeplot)-MSError(subplot)}c \\
\tilde{{\sigma}}_B^2& =\frac{MSBlock-MSError(wholeplot)}{ac}
\end{aligned}\]</span></p>
<p>方差分量的矩法估计为</p>
<p><span class="math display">\[\begin{aligned}
&\hat{{\sigma}}_\varepsilon^2 =\tilde{\sigma}_\varepsilon^2 \\
&\hat{{\sigma}_w^2} =\begin{cases}\tilde{{\sigma}}_w^2&\operatorname{~if~}\tilde{{\sigma}}_w^2>0\\0&\operatorname{~if~}\tilde{{\sigma}}_w^2\leq0&\end{cases} \\
&\hat{{\sigma}}_{B}^{2} =\begin{cases}\tilde{{\sigma}}_B^2&\mathrm{~if~}\tilde{{\sigma}}_B^2>0\\0&\mathrm{~if~}\tilde{{\sigma}}_B^2\leq0&\end{cases}
\end{aligned}\]</span></p>
<p><span class="math inline">\(\mu_{ij},\bar{\mu}_{i\cdot},\bar{\mu}_{\cdot j}\)</span> 的估计分别为 <span class="math inline">\(\bar{{y}}_{ij\cdot},\bar{{y}}_{i{\cdot\cdot}},\bar{{y}}_{\cdot j\cdot}\)</span>. A 水平之间的比较是整区间比较 (between whole plot comparisons),用于检验 A 水平相等性的适当 <span class="math inline">\(F\)</span> 统计量是 <span class="math inline">\(F_A=MSA/MSError(whole plot)\)</span>. C 水平之间的比较和 A × C 交互作用的比较是整区内比较 (within whole plot comparisons) 或整区内的子区间比较 (between subplot comparisons within a whole plot),并且适当的 <span class="math inline">\(F\)</span> 统计量是 <span class="math inline">\(F_C=MSC/MSError(subplot)\)</span> 和 <span class="math inline">\(F_{A×C}=MSA×C/MSError(subplot)\)</span>. 这些 <span class="math inline">\(F\)</span> 统计量是通过查看表 <a href="chap24.html#tab:table24-9">24.9</a> 中的期望均方来构建的。</p>
<p>一旦计算出 <span class="math inline">\(F\)</span> 检验以确定均值之间是否存在显著差异,下一步就是进行多重比较以确定差异发生的位置。以下部分介绍了计算裂区设计的各种均值差异的标准误的方法。</p>
</div>
<div id="sec24-3" class="section level2 hasAnchor" number="24.3">
<h2><span class="header-section-number">24.3</span> 均值间比较的标准误<a href="chap24.html#sec24-3" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>使用处理均值或处理组合均值的对比来研究处理效应,特别是当方差分析表明一种或多种固定效果与零显著不同时。样本均值对比的标准误是必要的,以确定均值对比是否等于零,或者构造关于均值对比的置信区间。通常,对比涉及两个均值的比较。因此,本节讨论了两个均值的比较,而一般的对比将在第 <a href="chap24.html#sec24-4">24.4</a> 节中讨论。</p>
<p>为了演示确定适当标准误的方法,使用了一般裂区设计模型,其中整区设计是随机完全区组设计中的单向处理结构,子区处理结构涉及单向处理结构。这种情况下相应的效应模型可以表示为</p>
<p><span class="math display">\[y_{ijk}=\mu+\alpha_i+b_k+iv_{ik}+\gamma_j+(\alpha\gamma)_{ij}+\varepsilon_{ijk},\quad i=1,2,\ldots,a,\quad j=1,2,\ldots,c,\quad k=1,2,\ldots,r\]</span></p>
<p>均值模型可以表示为</p>
<p><span class="math display">\[y_{ijk}=\mu_{ij}+b_k+w_{ik}+\varepsilon_{ijk},\quad i=1,2,\ldots,a,~j=1,2,\ldots,c,~k=1,2,\ldots,r\]</span></p>
<p>其中各项如第 <a href="chap24.html#sec24-1">24.1</a> 节所述。</p>
<p>根据 A 水平和 C 水平之间是否存在任何交互作用,我们可能会感兴趣于四种类型的比较。如果没有交互作用,则有兴趣将 A 的水平相互比较,并将 C 的水平相互比较。</p>
<p>为比较 C 的水平,需要比较两个 <span class="math inline">\(\bar{\mu}_{\cdot j}\)</span>,这是由 <span class="math inline">\(\bar{{y}}_{\cdot j\cdot}\)</span> 估计的。确定适当标准误的过程涉及用模型的一些量来表示 <span class="math inline">\(\bar{{y}}_{\cdot j\cdot}\)</span>,这些量是通过对 i 和 k 求和得到的<a href="#fn39" class="footnote-ref" id="fnref39"><sup>39</sup></a>。C 的第 j 个主效应均值的模型是 <span class="math inline">\(\bar{y}_{{\cdot}j{\cdot}}=\bar{{\mu}}_{{\cdot}j}+\bar{b}_{{\cdot}}+\bar{{w}}_{{\cdot}\cdot}+\bar{{\varepsilon}}_{{\cdot}j{\cdot}}\)</span>. 考虑差值 <span class="math inline">\(\bar{{\mu}}_{\cdot1}-\bar{{\mu}}_{\cdot2}\)</span>, 其估计为 <span class="math inline">\(\bar{y}_{\cdot 1\cdot}-\bar{y}_{\cdot 2\cdot}\)</span>,可以用关于 C 的均值模型表示为 <span class="math inline">\(\bar{y}_{\cdot1\cdot}-\bar{y}_{\cdot2\cdot}=\bar{\mu}_{\cdot1}-\bar{\mu}_{\cdot2}+\bar{\varepsilon}_{\cdot1\cdot}-\bar{\varepsilon}_{\cdot2\cdot}\)</span>,因为涉及 <span class="math inline">\(\bar{b}_{{\cdot}}+\bar{{w}}_{{\cdot}\cdot}\)</span> 的项抵消了;也就是说,比较 <span class="math inline">\(\bar{y}_{\cdot1\cdot}-\bar{y}_{\cdot2\cdot}\)</span> 不取决于整区误差,也不取决于区组误差。<span class="math inline">\(\bar{y}_{\cdot1\cdot}-\bar{y}_{\cdot2\cdot}\)</span> 的方差可以证明等于</p>
<p><span class="math display">\[\mathrm{Var}(\bar{y}_{\cdot1\cdot}-\bar{y}_{\cdot2\cdot})=\mathrm{Var}(\bar{\varepsilon}_{\cdot1\cdot}-\bar{\varepsilon}_{\cdot2\cdot})=\frac{2\sigma_\varepsilon^2}{ar}\]</span></p>
<p>其中均值 <span class="math inline">\(\bar{\varepsilon}_{\cdot1\cdot}\)</span> 的方差为 <span class="math inline">\(\mathrm{Var}(\bar{{\varepsilon}}_{\cdot1\cdot})=\sigma_\varepsilon^2/ar\)</span> 其中 ar 为均值中的观测次数。类似地,对任何 <span class="math inline">\(j\ne j^\prime\)</span>,<span class="math inline">\(\mathrm{Var}(\bar{y}_{\cdot j\cdot}-\bar{y}_{\cdot j^\prime\cdot})=2\sigma_\varepsilon^2/ar\)</span>。<span class="math inline">\(\bar{y}_{\cdot j\cdot}-\bar{y}_{\cdot j^\prime\cdot}\)</span> 的标准误估计为</p>
<p><span class="math display">\[\widehat{s.e.}(\bar{y}_{.j.}-\bar{y}_{.j'.})=\sqrt{\frac{2\hat{\sigma}_{\varepsilon}^2}{ar}}=\sqrt{\frac{2MSError(subplot)}{ar}}\quad\text{for all }j\neq j'\]</span></p>
<p>基于 a(c-1)(r-1) 自由度。如果要进行多重比较(见第 <a href="chap3.html#chap3">3</a> 章),a(c-1)(r-1) 是在确定所需多重比较程序的分位数时需要使用的自由度。为了简单起见,计算 LSD 值,但 LSD 值可能不是用于给定情况的合适方法。用于比较两个子区处理均值的 LSD 值为</p>
<p><span class="math display">\[\mathrm{LSD}_\alpha=[t_{\alpha/2,a(c-1)(r-1)}]\widehat{s.e.}(\bar{y}_{\cdot j\cdot}-\bar{y}_{\cdot j^{\prime}\cdot})\]</span></p>
<p>为了比较 A 的水平,需要比较由 <span class="math inline">\(\bar{{y}}_{i\cdot \cdot}\)</span> 估计的 <span class="math inline">\(\bar{{\mu}}_{i\cdot}\)</span>. 量 <span class="math inline">\(\bar{{\mu}}_{i\cdot}\)</span> 可以用一般模型表示,通过对 j 和 k 求和,得到 <span class="math inline">\(\bar{y}_{i\cdot\cdot}=\bar{\mu}_{i\cdot}+\bar{b}_{\cdot}+\bar{w}_{i\cdot}+\bar{\varepsilon}_{ij\cdot\cdot}\)</span></p>
<p>对比 <span class="math inline">\(\bar{{\mu}}_{1\cdot}-\bar{{\mu}}_{2\cdot}\)</span> 的估计为 <span class="math inline">\(\bar{{y}}_{1\cdot \cdot}-\bar{{y}}_{2\cdot \cdot}\)</span>,可以用关于 <span class="math inline">\(\bar{{y}}_{i\cdot \cdot}\)</span> 的模型表示为 <span class="math inline">\(\bar{y}_{1\cdot\cdot}-\bar{y}_{2\cdot\cdot}=\bar{\mu}_{1\cdot}-\bar{\mu}_{2\cdot}+\bar{w}_{1\cdot}-\bar{w}_{2\cdot}+\bar{\varepsilon}_{1\cdot\cdot}-\bar{\varepsilon}_{2\cdot\cdot}\)</span>. 这种比较取决于整区和子区方差分量。<span class="math inline">\(\bar{y}_{1\cdot\cdot}-\bar{y}_{2\cdot\cdot}\)</span> 的方差为</p>
<p><span class="math display">\[\begin{aligned}
\mathrm{Var}(\bar{y}_{1\cdot\cdot}-\bar{y}_{2\cdot\cdot}) &=\operatorname{Var}(\bar{w}_{1\cdot}-\bar{w}_{2\cdot}+\bar{\varepsilon}_{1\cdot\cdot}-\bar{\varepsilon}_{2\cdot\cdot}) \\
&=\frac{2\sigma_w^2}r+\frac{2\sigma_\varepsilon^2}{rc} \\
&=\frac{2(\sigma_\varepsilon^2+c\sigma_w^2)}{rc}
\end{aligned}\]</span></p>
<p><span class="math inline">\(\bar{y}_{1\cdot\cdot}-\bar{y}_{2\cdot\cdot}\)</span> 的标准误估计为</p>
<p><span class="math display">\[\widehat{s.e.}(\bar{y}_{1\cdot\cdot}-\bar{y}_{2\cdot\cdot})=\sqrt{\frac{2(\hat{\sigma}_\varepsilon^2+c\hat{\sigma}_w^2)}{rc}}=\sqrt{\frac{2MSError(wholeplot)}{rc}}\]</span></p>
<p>基于 (r-1)(a-1) 个自由度。比较两个整区处理均值的 LSD 值为 <span class="math inline">\(\mathrm{LSD}_\alpha=[t_{\alpha/2,(a-1)(r-1)}]\widehat{\mathrm{s.e.}}(\bar{y}_{1\cdot\cdot}-\bar{y}_{2\cdot\cdot})\)</span></p>
<p>当存在显著的 A × C 交互作用时,比较通常必须基于双向单元格均值的集合。在研究这些单元格均值时,必须考虑两种不同类型的比较。<strong>第一种类型出现在比较同一整区处理(A)水平下的两个子区处理(C)均值时</strong>,例如 <span class="math inline">\(\mu_{11}-\mu_{12}\)</span>. <span class="math inline">\(\mu_{11}-\mu_{12}\)</span> 的最佳估计为 <span class="math inline">\(\bar{y}_{11\cdot}-\bar{y}_{12\cdot}\)</span>. 通过在一般模型中关于 k 求和,<span class="math inline">\(\bar{y}_{ij\cdot}\)</span> 可表示为 <span class="math inline">\({\bar{y}}_{ij{\cdot}}={\mu}_{ij}+\bar{b}_\cdot+\bar{w}_{i{\cdot}}+{\bar{\varepsilon}}_{ij{\cdot}}\)</span>,以及 <span class="math inline">\(\bar{y}_{11\cdot}-\bar{y}_{12\cdot}\)</span> 的方差为 <span class="math inline">\(\mathrm{Var}(\bar{y}_{11\cdot}-\bar{y}_{12\cdot})=\mathrm{Var}(\bar{w}_{1{\cdot}}+\bar{{\varepsilon}}_{11{\cdot}}-\bar{w}_{1{\cdot}}\bar{{\varepsilon}}_{12\cdot})=2{\sigma}_{{\varepsilon}}^2/r\)</span>. 因此,<strong>在整区处理的相同水平上,子区处理间比较的方差仅取决于子区误差</strong>。<span class="math inline">\(\bar{y}_{11\cdot}-\bar{y}_{12\cdot}\)</span> 标准误估计为</p>
<p><span class="math display">\[\widehat{s.e.}(\bar{y}_{11\cdot}-\bar{y}_{12\cdot})=\sqrt{\frac{2\hat{\sigma}_\varepsilon^2}r}=\sqrt{\frac{2MSError(subplot)}r}\]</span></p>
<p>相应的 LSD 值为 <span class="math inline">\(\mathrm{LSD}_{\alpha}=[t_{\alpha/2,a(r-1)(c-1)}]\widehat{s.e.}(\bar{y}_{1\cdot}-\bar{y}_{1\cdot2})\)</span>. 该 LSD 值可用于在整区处理的相同水平上比较任何一对子区处理。</p>
<p><strong>第二种类型的比较发生在相同或不同子区处理水平下比较两个整区处理</strong>,例如 <span class="math inline">\(\mu_{11}-\mu_{21}\)</span> 或 <span class="math inline">\(\mu_{11}-\mu_{22}\)</span>. 这两种类型的比较具有相同的标准误。<span class="math inline">\(\mu_{11}-\mu_{21}\)</span> 的最佳估计为 <span class="math inline">\(\bar{y}_{11\cdot}-\bar{y}_{21\cdot}\)</span>,用一般模型可表示为 <span class="math inline">\(\bar{y}_{11\cdot}-\bar{y}_{21\cdot}={\mu}_{11}-{\mu}_{21}+\bar{{w}}_{1\cdot}-\bar{{w}}_{2{\cdot}}+\bar{{\varepsilon}}_{11{\cdot}}-\bar{{\varepsilon}}_{21{\cdot}}\)</span>. 那么</p>