-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPopulating Next Right Pointers in Each Node__dfs.cpp
130 lines (104 loc) · 2.37 KB
/
Populating Next Right Pointers in Each Node__dfs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
Populating Next Right Pointers in Each Node
Given a binary tree
struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;
}
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Note:
You may only use constant extra space.
You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
1
/ \
2 3
/ \ / \
4 5 6 7
After calling your function, the tree should look like:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ / \
4->5->6->7 -> NULL
*/
#include<iostream>
#include <vector>
using namespace std;
//Definition for binary tree
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
struct TreeLinkNode {
int val;
TreeLinkNode *left, *right, *next;
TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
};
class Solution {
public:
void connect(TreeLinkNode *root) {
if (root == NULL)return;
static int count = 0;
if (count == 0)
{
root->next = NULL;
count = 1;
}
if (root == NULL)return;
if (root->left != NULL && root->right != NULL){
root->left->next = root->right;
if (root->next == NULL)
root->right->next = NULL;
else
root->right->next = root->next->left;
connect(root->left);
connect(root->right);
}
}
};
void main()
{
TreeNode Root(0);
TreeNode temp0(7);
TreeNode temp1(3);
TreeNode temp2(1);
TreeNode temp3(3);
TreeNode temp4(-2);
TreeNode temp5(7);
TreeNode temp6(-1);
TreeNode temp7(1);
TreeNode Root2(1);
TreeNode temp8(7);
TreeNode temp9(3);
//Root2.left = &temp8;
//Root2.right = &temp9;
//Root.left = &temp0;
//Root.right = &temp1;
//Root.left->left = &temp2;
//Root.left->right = &temp3;
//Root.right->left = &temp4;
//Root.left->left->left = &temp6;
//Root.left->left->right = &temp6;
//Root.right->right->right = &temp7;
Solution mySolu;
//cout << mySolu.isSameTree(&Root,&Root2) << endl;
/*
if (mySolu.isSameTree(&Root, &Root2))
cout << "yse " << endl;
else
cout << "no " << endl;
*/
TreeLinkNode Root3(0);
TreeLinkNode Root3_1(1);
TreeLinkNode Root3_2(2);
Root3.left = &Root3_1;
Root3.right = &Root3_2;
mySolu.connect(&Root3);
cout << "ok" << endl;
}