-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
77 lines (68 loc) · 2.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import numpy as np
import argparse
from train import train
from config import cfg
import tensorflow as tf
parser = argparse.ArgumentParser()
parser.add_argument(
'--middle_start',
type=bool,
default=False,
help='Starting from the middle')
parser.add_argument(
'--discriminative', type=bool, default=False, help='Discriminative or not')
parser.add_argument('--epoch', type=int, default=15, help='Epoch to train')
parser.add_argument(
'--batch_size_train', type=int, default=cfg.CONST.BATCH_SIZE_TRAIN, help='Batch size')
parser.add_argument(
'--batch_size_test', type=int, default=cfg.CONST.BATCH_SIZE_TEST, help='Batch size')
parser.add_argument('--ini_epoch', type=int, default=0, help='Initial epoch')
parser.add_argument(
'--conf_epoch',
type=int,
default=10000,
help='Confirmation epoch to evaluate interpolate, reconstruction')
parser.add_argument(
'--mode', type=str, default='train', help='train or validate')
parser.add_argument(
'--data_list',
type=str,
default='./train_3rscan.list',
help='train or validate')
parser.add_argument(
'--learning_rate_G',
type=float,
default=cfg.LEARNING_RATE_G,
help='Learning rate for Generator of Adam')
parser.add_argument(
'--learning_rate_D',
type=float,
default=cfg.LEARNING_RATE_D,
help='Learning rate for Discriminator of Adam')
FLAGS = parser.parse_args()
def main():
if not os.path.exists(cfg.DIR.CHECK_POINT_PATH):
os.makedirs(cfg.DIR.CHECK_POINT_PATH)
if not os.path.exists(cfg.DIR.TRAIN_OBJ_PATH):
os.makedirs(cfg.DIR.TRAIN_OBJ_PATH)
if not os.path.exists(cfg.DIR.EVAL_PATH):
os.makedirs(cfg.DIR.EVAL_PATH)
if FLAGS.middle_start:
print('middle_start')
if FLAGS.mode == 'train':
train(FLAGS.epoch, FLAGS.learning_rate_G, FLAGS.learning_rate_D,
FLAGS.batch_size_train, FLAGS.middle_start, FLAGS.ini_epoch,
FLAGS.discriminative, FLAGS.data_list)
elif FLAGS.mode == 'evaluate_recons' or 'evaluate_interpolate' or 'evaluate_noise':
from evaluate import evaluate
if FLAGS.mode == 'evaluate_recons':
mode = 'recons'
elif FLAGS.mode == 'evaluate_interpolate':
mode = 'interpolate'
else:
mode = 'noise'
evaluate(FLAGS.batch_size_test, FLAGS.conf_epoch, mode, FLAGS.discriminative,
FLAGS.data_list)
if __name__ == '__main__':
main()