-
Notifications
You must be signed in to change notification settings - Fork 17
/
evaluate.py
executable file
·551 lines (502 loc) · 23.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import numpy as np
import tensorflow as tf
import matplotlib
import os
from config import cfg
from model import network
from util import DataProcess, onehot, id_models_test
from sklearn.metrics import average_precision_score
import copy
from colorama import init
from termcolor import colored
import colorama
from pca import pca
from io_util import read_pcd, save_pcd
# use Colorama to make Termcolor work on Windows too
init()
tf.compat.v1.disable_eager_execution()
def IoU(on_gt, on_pd, vox_shape, IoU_compared=None):
# calc_IoU
epsilon = 0.1
if vox_shape[3] == 41:
name_list = [
'empty', 'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa',
'table', 'door', 'window', 'bookshelf', 'picture', 'counter',
'blinds', 'desk', 'shelves', 'curtain', 'dresser', 'pillow',
'mirror', 'floor mat', 'clothes', 'ceiling', 'books',
'refridgerator', 'television', 'paper', 'towel', 'shower curtain',
'box', 'whiteboard', 'person', 'night stand', 'toilet', 'sink',
'lamp', 'bathtub', 'bag', 'otherstructure', 'otherfurniture',
'otherprop'
]
elif vox_shape[3] == 12:
name_list = [
'emp', 'ceil', 'floor', 'wall', 'wind', 'chair', 'bed', 'sofa',
'table', 'tvs', 'furn', 'obj'
]
elif vox_shape[3] == 5:
name_list = ['empty', 'bench', 'chair', 'couch', 'table']
elif vox_shape[3] == 2:
name_list = ['empty', 'objec']
IoUs = np.zeros([vox_shape[3] + 1])
for class_n in np.arange(vox_shape[3]):
IoU_calc = 0
for sample_n in np.arange(on_gt.shape[0]):
on_pd_ = on_pd[sample_n, :, :, :, class_n]
on_gt_ = on_gt[sample_n, :, :, :, class_n]
mother = np.sum(np.clip(np.add(on_pd_, on_gt_), 0, 1), (0, 1, 2))
child = np.sum(np.multiply(on_pd_, on_gt_), (0, 1, 2))
IoU_calc += (child + epsilon) / (mother + epsilon)
IoUs[class_n] = np.round(IoU_calc * 100 / on_gt.shape[0], 1)
if IoU_compared is not None:
IoU_diff = np.round(IoUs[class_n] - IoU_compared[class_n], 3)
text_diff = ' +' + colored(
IoU_diff, 'green') if IoU_diff >= 0 else ' ' + colored(
IoU_diff, 'red')
print('IoU of ' + name_list[class_n] + ': ' + str(IoUs[class_n]) +
text_diff)
else:
print('IoU of ' + name_list[class_n] + ': ' + str(IoUs[class_n]))
if vox_shape[3] != 2:
IoUs[vox_shape[3]] = np.round(
np.sum(IoUs[1:vox_shape[3]]) / (vox_shape[3] - 1), 1)
elif vox_shape[3] == 2:
IoUs[vox_shape[3]] = np.round(np.sum(IoUs) / vox_shape[3], 1)
print('IoU average: ', str(IoUs[vox_shape[3]]))
print('')
return IoUs
def evaluate(batch_size, checknum, mode, discriminative, data_list):
n_vox = cfg.CONST.N_VOX
dim = cfg.NET.DIM
vox_shape = [n_vox[0], n_vox[1], n_vox[2], dim[4]]
com_shape = [n_vox[0], n_vox[1], n_vox[2], 2]
dim_z = cfg.NET.DIM_Z
start_vox_size = cfg.NET.START_VOX
kernel = cfg.NET.KERNEL
stride = cfg.NET.STRIDE
dilations = cfg.NET.DILATIONS
freq = cfg.CHECK_FREQ
save_path = cfg.DIR.EVAL_PATH
if discriminative is True:
model_path = cfg.DIR.CHECK_POINT_PATH + '-d'
else:
model_path = cfg.DIR.CHECK_POINT_PATH
chckpt_path = model_path + '/checkpoint' + str(checknum)
network_model = network(
batch_size=batch_size,
vox_shape=vox_shape,
com_shape=com_shape,
dim_z=dim_z,
dim=dim,
start_vox_size=start_vox_size,
kernel=kernel,
stride=stride,
dilations=dilations,
discriminative=discriminative,
is_train=False)
Z_tf, z_enc_tf, surf_tf, full_tf, full_gen_tf, surf_dec_tf, full_dec_tf,\
gen_loss_tf, discrim_loss_tf, recons_ssc_loss_tf, recons_com_loss_tf, recons_sem_loss_tf, encode_loss_tf, refine_loss_tf, summary_tf,\
space_effective_tf, part_tf, part_dec_tf, comp_gt_tf, comp_gen_tf, comp_dec_tf, ssc_tf, scores_tf = network_model.build_model()
if discriminative is True:
Z_tf_samp, comp_tf_samp, surf_tf_samp, full_tf_samp, part_tf_samp, scores_tf_samp = network_model.samples_generator(
visual_size=batch_size)
config_gpu = tf.compat.v1.ConfigProto()
config_gpu.gpu_options.allow_growth = True
sess = tf.compat.v1.InteractiveSession(config=config_gpu)
saver = tf.compat.v1.train.Saver()
# Restore variables from disk.
saver.restore(sess, chckpt_path)
print("...Weights restored.")
if mode == 'recons':
# evaluation for reconstruction
voxel_test, surf_test, part_test, num, data_paths = id_models_test(
dataset_portion=cfg.TRAIN.DATASET_PORTION, data_list=data_list)
# Evaluation masks
if cfg.dataset == 'scene' or 'fusion' or '3rscan':
# occluded region
space_effective = np.where(part_test > -1, 1, 0)
"""
voxel_test *= space_effective
part_test *= space_effective
# occluded region
"""
part_test[part_test < -1] = 0
surf_test[surf_test < 0] = 0
voxel_test[voxel_test < 0] = 0
num = voxel_test.shape[0]
print("test voxels loaded")
from progressbar import ProgressBar
pbar = ProgressBar()
for i in pbar(np.arange(int(num / batch_size))):
bth_space = space_effective[i * batch_size:i * batch_size +
batch_size]
bth_tsdf = part_test[i * batch_size:i * batch_size + batch_size]
bth_surf = surf_test[i * batch_size:i * batch_size + batch_size]
bth_voxel = voxel_test[i * batch_size:i * batch_size + batch_size]
bth_pd_surf, bth_pd_full, bth_pd_part, bth_part_enc_Z, bth_comp_gt, bth_pd_comp, bth_ssc = sess.run(
[
surf_dec_tf, full_dec_tf, part_dec_tf, z_enc_tf,
comp_gt_tf, comp_dec_tf, ssc_tf
],
feed_dict={
space_effective_tf: bth_space,
part_tf: bth_tsdf,
surf_tf: bth_surf,
full_tf: bth_voxel
})
if i == 0:
pd_part = bth_pd_part
pd_surf = bth_pd_surf
pd_full = bth_pd_full
pd_ssc = bth_ssc
part_enc_Z = bth_part_enc_Z
comp_gt = bth_comp_gt
pd_comp = bth_pd_comp
else:
pd_part = np.concatenate((pd_part, bth_pd_part), axis=0)
pd_surf = np.concatenate((pd_surf, bth_pd_surf), axis=0)
pd_full = np.concatenate((pd_full, bth_pd_full), axis=0)
pd_ssc = np.concatenate((pd_ssc, bth_ssc), axis=0)
part_enc_Z = np.concatenate((part_enc_Z, bth_part_enc_Z),
axis=0)
comp_gt = np.concatenate((comp_gt, bth_comp_gt), axis=0)
pd_comp = np.concatenate((pd_comp, bth_pd_comp), axis=0)
print("forwarded")
# For visualization
bin_file = np.uint8(voxel_test)
bin_file.tofile(save_path + '/scene.bin')
sdf_volume = np.round(10 * np.abs(np.array(part_test)))
observed = np.array(part_test)
if cfg.dataset == 'scene':
observed = np.abs(observed)
observed *= 10
observed -= 7
observed = np.round(observed)
pd_part = np.abs(pd_part)
pd_part *= 10
pd_part -= 7
elif cfg.dataset == 'object':
observed = np.clip(observed, 0, 1)
pd_part = np.clip(pd_part, 0, 1)
sdf_volume.astype('uint8').tofile(save_path + '/surface.bin')
pd_part.astype('uint8').tofile(save_path + '/dec_part.bin')
depsem_gt = np.multiply(voxel_test, np.clip(observed, 0, 1))
if cfg.dataset == 'scene' or cfg.dataset == '3rscan':
depsem_gt[depsem_gt < 0] = 0
depsem_gt.astype('uint8').tofile(save_path + '/depth_seg_scene.bin')
# decoded
do_save_pcd = True
if do_save_pcd is True:
results_pcds = np.argmax(pd_ssc, axis=4)
# results_pcds = voxel_test
for i in range(np.shape(results_pcds)[0]):
pcd_idx = np.where(results_pcds[i] > 0)
pts_coord = np.float32(np.transpose(pcd_idx)) / 64 - 0.5
# pts_coord = np.float32(np.transpose(pcd_idx))
pts_color = matplotlib.cm.gist_rainbow(
np.float32(results_pcds[i][pcd_idx]) / dim[4])
output_name = os.path.join('results_pcds',
'%s.pcd' % data_paths[i][1][:-4])
output_pcds = np.concatenate((pts_coord, pts_color[:, 0:3]),
-1)
if data_paths[i][1][:-4].find('/') > 0:
synset_id, _ = data_paths[i][1][:-4].split('/')
os.makedirs(
os.path.join('results_pcds', synset_id), exist_ok=True)
save_pcd(output_name, output_pcds)
np.argmax(
pd_ssc, axis=4).astype('uint8').tofile(save_path + '/dec_ssc.bin')
error = np.array(
np.clip(np.argmax(pd_ssc, axis=4), 0, 1) +
np.argmax(comp_gt, axis=4) * 2)
error.astype('uint8').tofile(save_path + '/dec_ssc_error.bin')
np.argmax(
pd_surf,
axis=4).astype('uint8').tofile(save_path + '/dec_surf.bin')
error = np.array(
np.clip(np.argmax(pd_surf, axis=4), 0, 1) +
np.argmax(comp_gt, axis=4) * 2)
error.astype('uint8').tofile(save_path + '/dec_surf_error.bin')
np.argmax(
pd_full,
axis=4).astype('uint8').tofile(save_path + '/dec_full.bin')
error = np.array(
np.clip(np.argmax(pd_full, axis=4), 0, 1) +
np.argmax(comp_gt, axis=4) * 2)
error.astype('uint8').tofile(save_path + '/dec_full_error.bin')
np.argmax(
pd_comp,
axis=4).astype('uint8').tofile(save_path + '/dec_complete.bin')
np.argmax(
comp_gt,
axis=4).astype('uint8').tofile(save_path + '/complete_gt.bin')
# reconstruction and generation from normal distribution evaluation
# generator from random distribution
if discriminative is True:
np.save(save_path + '/decode_z.npy', part_enc_Z)
sample_times = 10
for j in np.arange(sample_times):
gaussian_samp = np.random.normal(
size=(batch_size, start_vox_size[0], start_vox_size[1],
start_vox_size[2], dim_z)).astype(np.float32)
z_comp_rnd, z_surf_rnd, z_full_rnd, z_part_rnd, scores_samp = sess.run(
[
comp_tf_samp, surf_tf_samp, full_tf_samp, part_tf_samp,
scores_tf_samp
],
feed_dict={Z_tf_samp: gaussian_samp})
if j == 0:
z_comp_rnd_all = z_comp_rnd
z_part_rnd_all = z_part_rnd
z_surf_rnd_all = z_surf_rnd
z_full_rnd_all = z_full_rnd
else:
z_comp_rnd_all = np.concatenate(
[z_comp_rnd_all, z_comp_rnd], axis=0)
z_part_rnd_all = np.concatenate(
[z_part_rnd_all, z_part_rnd], axis=0)
z_surf_rnd_all = np.concatenate(
[z_surf_rnd_all, z_surf_rnd], axis=0)
z_full_rnd_all = np.concatenate(
[z_full_rnd_all, z_full_rnd], axis=0)
print('Discrim score: ' +
colored(np.mean(scores_samp), 'blue'))
gaussian_samp.astype('float32').tofile(save_path + '/sample_z.bin')
np.argmax(
z_comp_rnd_all,
axis=4).astype('uint8').tofile(save_path + '/gen_comp.bin')
np.argmax(
z_surf_rnd_all,
axis=4).astype('uint8').tofile(save_path + '/gen_surf.bin')
np.argmax(
z_full_rnd_all,
axis=4).astype('uint8').tofile(save_path + '/gen_full.bin')
if cfg.dataset == 'scene':
z_part_rnd_all = np.abs(z_part_rnd_all)
z_part_rnd_all *= 10
z_part_rnd_all -= 7
elif cfg.dataset == 'object':
z_part_rnd_all[z_part_rnd_all <= 0.4] = 0
z_part_rnd_all[z_part_rnd_all > 0.4] = 1
z_part_rnd = np.squeeze(z_part_rnd)
z_part_rnd_all.astype('uint8').tofile(save_path + '/gen_part.bin')
print("voxels saved")
# numerical evalutation
iou_eval = True
if iou_eval is True:
# completion
print(colored("Completion:", 'red'))
on_gt = comp_gt
pd_max = np.argmax(pd_comp, axis=4)
on_pd = onehot(pd_max, 2)
IoU_comp = np.zeros([2 + 1])
AP_comp = np.zeros([2 + 1])
IoU_comp = IoU(on_gt, on_pd,
[vox_shape[0], vox_shape[1], vox_shape[2], 2])
# depth segmentation
print(colored("Segmentation:", 'red'))
print(colored("encoded", 'cyan'))
on_gt = onehot(depsem_gt, vox_shape[3])
on_pd = np.multiply(
onehot(np.argmax(pd_comp, axis=4), vox_shape[3]),
np.expand_dims(np.clip(observed, 0, 1), -1))
# IoUs = np.zeros([vox_shape[3] + 1])
IoU_temp = IoU(on_gt, on_pd, vox_shape)
IoU_all = np.expand_dims(IoU_temp, axis=1)
print(colored("decoded", 'cyan'))
on_pd = np.multiply(
onehot(np.argmax(pd_surf, axis=4), vox_shape[3]),
np.expand_dims(np.clip(observed, 0, 1), -1))
IoU_temp = IoU(
on_gt, on_pd, vox_shape, IoU_compared=IoU_all[:, -1])
IoU_all = np.concatenate(
(IoU_all, np.expand_dims(IoU_temp, axis=1)), axis=1)
print(colored("solidly decoded", 'cyan'))
on_pd = np.multiply(
onehot(np.argmax(pd_full, axis=4), vox_shape[3]),
np.expand_dims(np.clip(observed, 0, 1), -1))
IoU_temp = IoU(
on_gt, on_pd, vox_shape, IoU_compared=IoU_all[:, -1])
IoU_all = np.concatenate(
(IoU_all, np.expand_dims(IoU_temp, axis=1)), axis=1)
# volume segmentation
print(colored("Semantic Completion:", 'red'))
on_surf_gt = onehot(surf_test, vox_shape[3])
on_gt = onehot(voxel_test, vox_shape[3])
print(colored("encoded", 'cyan'))
on_pd = onehot(np.argmax(pd_ssc, axis=4), vox_shape[3])
IoU_temp = IoU(on_gt, on_pd, vox_shape)
IoU_all = np.concatenate(
(IoU_all, np.expand_dims(IoU_temp, axis=1)), axis=1)
print(colored("decoded", 'cyan'))
on_pd = onehot(np.argmax(pd_surf, axis=4), vox_shape[3])
IoU_temp = IoU(
on_gt, on_pd, vox_shape, IoU_compared=IoU_all[:, -1])
IoU_all = np.concatenate(
(IoU_all, np.expand_dims(IoU_temp, axis=1)), axis=1)
print(colored("solidly decoded", 'cyan'))
on_pd = onehot(np.argmax(pd_full, axis=4), vox_shape[3])
IoU_temp = IoU(
on_gt, on_pd, vox_shape, IoU_compared=IoU_all[:, -1])
IoU_all = np.concatenate(
(IoU_all, np.expand_dims(IoU_temp, axis=1)), axis=1)
np.savetxt(
save_path + '/IoU.csv',
np.transpose(IoU_all[1:] * 100),
delimiter=" & ",
fmt='%2.1f')
# interpolation evaluation
if mode == 'interpolate':
interpolate_num = 8
#interpolatioin latent vectores
decode_z = np.load(save_path + '/decode_z.npy')
print(save_path)
decode_z = decode_z[20:20 + batch_size]
for l in np.arange(batch_size):
for r in np.arange(batch_size):
if l != r:
print(l, r)
base_num_left = l
base_num_right = r
left = np.reshape(decode_z[base_num_left], [
1, start_vox_size[0], start_vox_size[1],
start_vox_size[2], dim_z
])
right = np.reshape(decode_z[base_num_right], [
1, start_vox_size[0], start_vox_size[1],
start_vox_size[2], dim_z
])
duration = (right - left) / (interpolate_num - 1)
# left is the reference sample and Z_np_samp is the remaining samples
if base_num_left == 0:
Z_np_samp = decode_z[1:]
elif base_num_left == batch_size - 1:
Z_np_samp = decode_z[:batch_size - 1]
else:
Z_np_samp_before = np.reshape(
decode_z[:base_num_left], [
base_num_left, start_vox_size[0],
start_vox_size[1], start_vox_size[2], dim_z
])
Z_np_samp_after = np.reshape(
decode_z[base_num_left + 1:], [
batch_size - base_num_left - 1,
start_vox_size[0], start_vox_size[1],
start_vox_size[2], dim_z
])
Z_np_samp = np.concatenate(
[Z_np_samp_before, Z_np_samp_after], axis=0)
for i in np.arange(interpolate_num):
if i == 0:
Z = copy.copy(left)
interpolate_z = copy.copy(Z)
else:
Z = Z + duration
interpolate_z = np.concatenate([interpolate_z, Z],
axis=0)
# Z_np_samp is used to fill up the batch
gaussian_samp = np.concatenate([Z, Z_np_samp], axis=0)
pd_full_rnd, pd_part_rnd = sess.run(
[full_tf_samp, part_tf_samp],
feed_dict={Z_tf_samp: gaussian_samp})
interpolate_vox = np.reshape(pd_full_rnd[0], [
1, vox_shape[0], vox_shape[1], vox_shape[2],
vox_shape[3]
])
interpolate_part = np.reshape(pd_part_rnd[0], [
1, vox_shape[0], vox_shape[1], vox_shape[2],
com_shape[3]
])
if i == 0:
pd_full = interpolate_vox
pd_part = interpolate_part
else:
pd_full = np.concatenate(
[pd_full, interpolate_vox], axis=0)
pd_part = np.concatenate(
[pd_part, interpolate_part], axis=0)
interpolate_z.astype('uint8').tofile(
save_path + '/interpolate/interpolation_z' + str(l) +
'-' + str(r) + '.bin')
full_models_cat = np.argmax(pd_comp, axis=4)
full_models_cat.astype('uint8').tofile(
save_path + '/interpolate/interpolation_f' + str(l) +
'-' + str(r) + '.bin')
if cfg.dataset == 'scene':
pd_part = np.abs(pd_part)
pd_part *= 10
pd_part -= 7
elif cfg.dataset == 'object':
pd_part = np.argmax(pd_part, axis=4)
pd_part.astype('uint8').tofile(
save_path + '/interpolate/interpolation_p' + str(l) +
'-' + str(r) + '.bin')
print("voxels saved")
# add noise evaluation
if mode == 'noise':
decode_z = np.load(save_path + '/decode_z.npy')
decode_z = decode_z[:batch_size]
noise_num = 10
for base_num in np.arange(batch_size):
print(base_num)
base = np.reshape(decode_z[base_num], [
1, start_vox_size[0], start_vox_size[1], start_vox_size[2],
dim_z
])
eps = np.random.normal(size=(noise_num - 1,
dim_z)).astype(np.float32)
if base_num == 0:
Z_np_samp = decode_z[1:]
elif base_num == batch_size - 1:
Z_np_samp = decode_z[:batch_size - 1]
else:
Z_np_samp_before = np.reshape(decode_z[:base_num], [
base_num, start_vox_size[0], start_vox_size[1],
start_vox_size[2], dim_z
])
Z_np_samp_after = np.reshape(decode_z[base_num + 1:], [
batch_size - base_num - 1, start_vox_size[0],
start_vox_size[1], start_vox_size[2], dim_z
])
Z_np_samp = np.concatenate([Z_np_samp_before, Z_np_samp_after],
axis=0)
for c in np.arange(start_vox_size[0]):
for l in np.arange(start_vox_size[1]):
for d in np.arange(start_vox_size[2]):
for i in np.arange(noise_num):
if i == 0:
Z = copy.copy(base)
noise_z = copy.copy(Z)
else:
Z = copy.copy(base)
Z[0, c, l, d, :] += eps[i - 1]
noise_z = np.concatenate([noise_z, Z], axis=0)
gaussian_samp = np.concatenate([Z, Z_np_samp],
axis=0)
pd_full_rnd = sess.run(
full_tf_samp,
feed_dict={Z_tf_samp: gaussian_samp})
"""
refined_voxs_rnd = sess.run(
sample_refine_full_tf,
feed_dict={
sample_full_tf: pd_full_rnd
})
"""
noise_vox = np.reshape(pd_full_rnd[0], [
1, vox_shape[0], vox_shape[1], vox_shape[2],
vox_shape[3]
])
if i == 0:
pd_full = noise_vox
else:
pd_full = np.concatenate([pd_full, noise_vox],
axis=0)
np.save(
save_path + '/noise_z' + str(base_num) + '_' +
str(c) + str(l) + str(d) + '.npy', noise_z)
full_models_cat = np.argmax(pd_full, axis=4)
np.save(
save_path + '/noise' + str(base_num) + '_' + str(c)
+ str(l) + str(d) + '.npy', full_models_cat)
print("voxels saved")