forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdygraph_model.py
93 lines (75 loc) · 3.26 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
from net import MHCN
class DygraphModel():
# define model
def create_model(self, config):
n_layers = config.get("hyper_parameters.n_layer")
emb_size = config.get("hyper_parameters.num_factors")
mhcn_model = MHCN(n_layers=n_layers, emb_size=emb_size, config=config)
return mhcn_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data):
# u_idx, v_idx, neg_idx = inputs
user_input = paddle.squeeze(
paddle.to_tensor(batch_data[0].numpy().astype('int64')
.reshape(-1, 1)),
axis=1)
item_input = paddle.squeeze(
paddle.to_tensor(batch_data[1].numpy().astype('int64')
.reshape(-1, 1)),
axis=1)
neg_item_input = paddle.squeeze(
paddle.to_tensor(batch_data[2].numpy().astype('int64')
.reshape(-1, 1)),
axis=1)
return [user_input, item_input, neg_item_input]
# define loss function
def create_loss(self, outputs):
user_emb, pos_item_emb, neg_item_emb, ss_loss = outputs
score = paddle.sum(paddle.multiply(user_emb, pos_item_emb),
1) - paddle.sum(
paddle.multiply(user_emb, neg_item_emb), 1)
rec_loss = -paddle.sum(paddle.log(F.sigmoid(score) + 10e-8))
ss_loss = ss_loss * 0.01
loss = rec_loss + ss_loss
return loss, rec_loss, ss_loss
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
optimizer = paddle.optimizer.Adam(
learning_rate=lr, parameters=dy_model.parameters())
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = []
metrics_list = []
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
inputs = self.create_feeds(batch_data)
prediction = dy_model.forward(inputs)
loss, rec_loss, ss_loss = self.create_loss(prediction)
# update metrics
print_dict = {"loss": loss, "rec_loss": rec_loss}
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
inputs = self.create_feeds(batch_data)
prediction = dy_model.forward(inputs)
return metrics_list, prediction